Patents Represented by Attorney, Agent or Law Firm L. E. Carnahan
  • Patent number: 6154119
    Abstract: Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.
    Type: Grant
    Filed: June 29, 1998
    Date of Patent: November 28, 2000
    Assignee: The Regents of the University of California
    Inventors: Alan F. Jankowski, Anthony P. Schmid
  • Patent number: 6149785
    Abstract: A process and apparatus for coating small particles and fibers. The process involves agitation by vibrating or tumbling the particles or fibers to promote coating uniformly, removing adsorbed gases and static charges from the particles or fibers by an initial plasma cleaning, and coating the particles or fibers with one or more coatings, a first coating being an adhesion coating, and with subsequent coatings being deposited in-situ to prevent contamination at layer interfaces. The first coating is of an adhesion forming element (i.e. W, Zr, Re, Cr, Ti) of a 100-10,000 .ANG. thickness and the second coating or final coating of a multiple (0.1-10 microns) being Cu or Ag, for example for brazing processes, or other desired materials that defines the new surface related properties of the particles. An essential feature of the coating process is the capability to deposit in-situ without interruption to prevent the formation of a contaminated interface that could adversely affect the coating adhesion.
    Type: Grant
    Filed: January 20, 1998
    Date of Patent: November 21, 2000
    Assignee: The Regents of the University of California
    Inventors: Daniel M. Makowiecki, John A. Kerns, Craig S. Alford, Mark A. McKernan
  • Patent number: 6150060
    Abstract: A transmission lithography mask that utilizes a transparent substrate or a partially transparent membrane as the active region of the mask. A reflective single layer or multilayer coating is deposited on the membrane surface facing the illumination system. The coating is selectively patterned (removed) to form transmissive (bright) regions. Structural imperfections and defects in the coating have negligible effect on the aerial image of the mask master pattern since the coating is used to reflect radiation out of the entrance pupil of the imaging system. Similarly, structural imperfections in the clear regions of the membrane have little influence on the amplitude or phase of the transmitted electromagnetic fields. Since the mask "discards," rather than absorbs, unwanted radiation, it has reduced optical absorption and reduced thermal loading as compared to conventional designs. For EUV applications, the mask circumvents the phase defect problem, and is independent of the thermal load during exposure.
    Type: Grant
    Filed: January 11, 1999
    Date of Patent: November 21, 2000
    Assignee: The Regents of the University of California
    Inventor: Stephen P. Vernon
  • Patent number: 6146103
    Abstract: A magnetohydrodynamic (MHD) micropump and microsensor which utilizes micromachining to integrate the electrodes with microchannels and includes a magnet for producing magnetic fields perpendicular to both the electrical current direction and the fluid flow direction. The magnet can also be micromachined and integrated with the micropump using existing technology. The MHD micropump, for example, can generate continuous, reversible flow, with readily controllable flow rates. The flow can be reversed by either reversing the electrical current flow or reversing the magnetic field. By mismatching the electrodes, a swirling vortex flow can be generated for potential mixing applications. No moving parts are necessary and the dead volume is minimal. The micropumps can be placed at any position in a fluidic circuit and a combination of micropumps can generate fluidic plugs and valves.
    Type: Grant
    Filed: October 9, 1998
    Date of Patent: November 14, 2000
    Assignee: The Regents of the University of California
    Inventors: Abraham P. Lee, Asuncion V. Lemoff
  • Patent number: 6147818
    Abstract: A projection optics box or assembly for use in an optical assembly, such as in an extreme ultraviolet lithography (EUVL) system using 10-14 nm soft x-ray photons. The projection optics box utilizes a plurality of highly reflective optics or mirrors, each mounted on a precision actuator, and which reflects an optical image, such as from a mask, in the EUVL system onto a point of use, such as a target or silicon wafer, the mask, for example, receiving an optical signal from a source assembly, such as a developed from laser system, via a series of highly reflective mirrors of the EUVL system. The plurality of highly reflective optics or mirrors are mounted in a housing assembly comprised of a series of bulkheads having wall members secured together to form a unit construction of maximum rigidity. Due to the precision actuators, the mirrors must be positioned precisely and remotely in tip, tilt, and piston (three degrees of freedom), while also providing exact constraint.
    Type: Grant
    Filed: December 21, 1998
    Date of Patent: November 14, 2000
    Assignee: The Regents of the University of California
    Inventors: Layton C. Hale, Terry Malsbury, Russell M. Hudyma, John M. Parker
  • Patent number: 6147497
    Abstract: The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.
    Type: Grant
    Filed: June 29, 1998
    Date of Patent: November 14, 2000
    Assignee: The Regents of the University of California
    Inventors: James G. Berryman, William D. Daily, Abelardo L. Ramirez, Jeffery J. Roberts
  • Patent number: 6142549
    Abstract: A hidden storage system incorporated in the bed of a vehicle without altering the bed's external appearance or various contours thereof, and without revealing the storage system by assembly of modules containing various individual components. The storage system is located adjacent the wheel well sections of the bed, and uses hinges to open and close fender/side panel sections of the bed, either upwardly, downwardly or sideways. Since the storage system does not alter the truck's external appearance, it reduces the attraction for theft. Also, since the storage area does not extend inwardly beyond the conventional wheel wells, the storage system leaves most of the truck bed free for use. The hidden storage system may be incorporated into the bed of various side panel configurations without detracting from the appearance of the side panels configurations.
    Type: Grant
    Filed: June 14, 1999
    Date of Patent: November 7, 2000
    Inventors: Scott Clare, Neil G. Long
  • Patent number: 6142706
    Abstract: A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.
    Type: Grant
    Filed: May 13, 1998
    Date of Patent: November 7, 2000
    Assignee: The Regents of the University of California
    Inventors: Roger D. Aines, Robin L. Newmark, Kevin G. Knauss
  • Patent number: 6143989
    Abstract: A system involving an active (i.e. electrical) technique for the verification of: 1) close tolerance mechanical alignment between two component, and 2) electrical contact between mating through an elastomeric interface. For example, the two components may be an alumina carrier and a printed circuit board, two mating parts that are extremely small, high density parts and require alignment within a fraction of a mil, as well as a specified interface point of engagement between the parts. The system comprises pairs of conductive structures defined in the surfaces layers of the alumina carrier and the printed circuit board, for example. The first pair of conductive structures relate to item (1) above and permit alignment verification between mating parts. The second pair of conductive structures relate to item (2) above and permit verification of electrical contact between mating parts.
    Type: Grant
    Filed: July 20, 1995
    Date of Patent: November 7, 2000
    Assignee: The Regents of the University of California
    Inventor: William M. Greenbaum
  • Patent number: 6140057
    Abstract: A method is provided for determining a clastogenic signature of a sample of chromosomes by quantifying a frequency of a first type of chromosome aberration present in the sample; quantifying a frequency of a second, different type of chromosome aberration present in the sample; and comparing the frequency of the first type of chromosome aberration to the frequency of the second type of chromosome aberration. A method is also provided for using that clastogenic signature to identify a clastogenic agent or dosage to which the cells were exposed.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: October 31, 2000
    Assignee: The Regents of the University of California
    Inventor: Joe N. Lucas
  • Patent number: 6139716
    Abstract: A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.
    Type: Grant
    Filed: May 18, 1999
    Date of Patent: October 31, 2000
    Assignee: The Regents of the University of California
    Inventors: Anthony M. McCarthy, Robert J. Contolini, Vladimir Liberman, Jeffrey Morse
  • Patent number: 6132974
    Abstract: A method is provided for determining a clastogenic signature of a sample of chromosomes by quantifying a frequency of a first type of chromosome aberration present in the sample; quantifying a frequency of a second, different type of chromosome aberration present in the sample; and comparing the frequency of the first type of chromosome aberration to the frequency of the second type of chromosome aberration. A method is also provided for using that clastogenic signature to identify a clastogenic agent or dosage to which the cells were exposed.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: October 17, 2000
    Assignee: The Regents of the University of California
    Inventor: Joe N. Lucas
  • Patent number: 6131410
    Abstract: An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn.
    Type: Grant
    Filed: March 16, 1998
    Date of Patent: October 17, 2000
    Assignee: The Regents of the University of California
    Inventors: Steve P. Swierkowski, James C. Davidson, Joseph W. Balch
  • Patent number: 6134049
    Abstract: Stress compensating systems that reduces/compensates stress in a multilayer without loss in reflectivity, while reducing total film thickness compared to the earlier buffer-layer approach. The stress free multilayer systems contain multilayer systems with two different material combinations of opposite stress, where both systems give good reflectivity at the design wavelengths. The main advantage of the multilayer system design is that stress reduction does not require the deposition of any additional layers, as in the buffer layer approach. If the optical performance of the two systems at the design wavelength differ, the system with the poorer performance is deposited first, and then the system with better performance last, thus forming the top of the multilayer system.
    Type: Grant
    Filed: September 25, 1998
    Date of Patent: October 17, 2000
    Assignee: The Regents of the University of California
    Inventors: Eberhard A. Spiller, Paul B. Mirkarimi, Claude Montcalm, Sasa Bajt, James A. Folta
  • Patent number: 6134300
    Abstract: A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.
    Type: Grant
    Filed: November 5, 1998
    Date of Patent: October 17, 2000
    Assignee: The Regents of the University of California
    Inventors: James E. Trebes, Perry M. Bell, Ronald B. Robinson
  • Patent number: 6126804
    Abstract: A new approach and instrument for field identification of micro-organisms and DNA fragments using a small and disposable device containing integrated polymerase chain reaction (PCR) enzymatic reaction wells, attached capillary electrophoresis (CE) channels, detectors, and read-out all on/in a small hand-held package. The analysis instrument may be made inexpensively, for example, of plastic, and thus is disposable, which minimizes cross contamination and the potential for false positive identification between samples. In addition, it is designed for multiple users with individual applications. The integrated PCR/CE is manufactured by the PCR well and CE channels are "stamped" into plastic depressions where conductive coatings are made in the wells and ends of the CE microchannels to carry voltage and current to heat the PCR reaction mixtures and simultaneously draw DNA bands up the CE channels.
    Type: Grant
    Filed: September 23, 1997
    Date of Patent: October 3, 2000
    Assignee: The Regents of the University of California
    Inventor: Brian D. Andresen
  • Patent number: 6124712
    Abstract: A portable, low-power, metallic object detector and method for providing an image of a detected metallic object. In one embodiment, the present portable low-power metallic object detector an array of giant magnetoresistive (GMR) sensors. The array of GMR sensors is adapted for detecting the presence of and compiling image data of a metallic object. In the embodiment, the array of GMR sensors is arranged in a checkerboard configuration such that axes of sensitivity of alternate GMR sensors are orthogonally oriented. An electronics portion is coupled to the array of GMR sensors. The electronics portion is adapted to receive and process the image data of the metallic object compiled by the array of GMR sensors. The embodiment also includes a display unit which is coupled to the electronics portion. The display unit is adapted to display a graphical representation of the metallic object detected by the array of GMR sensors. In so doing, a graphical representation of the detected metallic object is provided.
    Type: Grant
    Filed: May 16, 1997
    Date of Patent: September 26, 2000
    Assignee: The Regents of the University of California
    Inventor: Alison Chaiken
  • Patent number: 6120857
    Abstract: Short-wavelength photons are used to ablate material from a low work function target onto a suitable substrate. The short-wavelength photons are at or below visible wavelength. The elemental composition of the deposit is controlled by the composition of the target and the gaseous environment in which the ablation process is performed. The process is carried out in a deposition chamber to which a short-wavelength laser is mounted and which includes a substrate holder which can be rotated, tilted, heated, or cooled. The target material is mounted onto a holder that spins the target during laser ablation. In addition, the deposition chamber is provided with a vacuum pump, an external gas supply with atomizer and radical generator, a gas generator for producing a flow of molecules on the substrate, and a substrate cleaning device, such as an ion gun. The substrate can be rotated and tilted, for example, whereby only the tip of an emitter can be coated with a low work function material.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: September 19, 2000
    Assignee: The Regents of the University of California
    Inventors: Mehdi Balooch, Long N. Dinh, Wigbert J. Siekhaus
  • Patent number: 6120519
    Abstract: A liposuction apparatus is provided which contains a shaft having a reinforced swan neck structure. The apparatus has a suction channel for removing fatty tissue and a channel for introducing cooling fluid material. Optionally, the tip of the shaft has a bezel for better separation of tissue and a sonic or ultrasonic generator.
    Type: Grant
    Filed: December 2, 1998
    Date of Patent: September 19, 2000
    Inventors: Paul J. Weber, Michael R. Weber
  • Patent number: 6114097
    Abstract: A process which vastly improves the 3-D patterning capability of laser pantography (computer controlled laser direct-write patterning). The process uses commercially available electrodeposited photoresist (EDPR) to pattern 3-D surfaces. The EDPR covers the surface of a metal layer conformally, coating the vertical as well as horizontal surfaces. A laser pantograph then patterns the EDPR, which is subsequently developed in a standard, commercially available developer, leaving patterned trench areas in the EDPR. The metal layer thereunder is now exposed in the trench areas and masked in others, and thereafter can be etched to form the desired pattern (subtractive process), or can be plated with metal (additive process), followed by a resist stripping, and removal of the remaining field metal (additive process). This improved laser pantograph process is simpler, faster, move manufacturable, and requires no micro-machining.
    Type: Grant
    Filed: February 13, 1995
    Date of Patent: September 5, 2000
    Assignee: The Regents of the University of California
    Inventors: Vincent Malba, Anthony F. Bernhardt