Patents Represented by Attorney Law Office of Gerald Maliszewski
  • Patent number: 7772873
    Abstract: A method is provided for thermal electric binary logic control. The method accepts an input voltage representing an input logic state. A heat reference is controlled in response to the input voltage. The method supplies an output voltage representing an output logic state, responsive to the heat reference. More explicitly, the heat reference controls the output voltage of a temperature-sensitive voltage divider. For example, the temperature-sensitive voltage divider may be a thermistor voltage divider.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: August 10, 2010
    Assignee: Applied Micro Circuits Corporation
    Inventor: Joseph Martin Patterson
  • Patent number: 7768283
    Abstract: A universal socketless integrated circuit (IC) electrical test fixture is provided. The test fixture is made up of a probing platform to accept and heatsink an IC. The IC has electrical contacts formed on a bottom surface in an array of m rows, where each row includes n, or less contacts. A probe arm includes p probe pins, where p is greater than, or equal to n. A clamping mechanism mechanically interfaces the probe arm probe pins to a row of IC contacts under test. An electrical measurement device has a first interface connected to the p probe pins of the probe arm to measure electrical characteristics associated with the IC contacts under test. The probe arm, clamping mechanism, and probe platform work in cooperation to electrically interface any row of the IC contacts with the electrical measurement device.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: August 3, 2010
    Assignee: Applied Micro Circuits Corporation
    Inventor: Joseph Martin Patterson
  • Patent number: 7768706
    Abstract: An optical fiber micro array lens is provided along with an associated fabrication method. The micro array lens is fabricated from a mesh of optical fibers. The mesh includes a first plurality of cylindrical optical fibers. Each fiber from the first plurality has a flat bottom surface and a hemicylindrical top surface. The top and bottom surfaces are aligned in parallel with a central fiber axis. The mesh also includes a second plurality of cylindrical optical fibers. Each fiber from the second plurality has a hemicylindrical bottom surface overlying and in contact with the top surfaces of the first plurality of optical fibers, and a flat top surface. The top and bottom surfaces are aligned in parallel with a central fiber axis. Each contact of the first and second plurality of optical fibers forms a lens assembly in a micro array of lenses.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: August 3, 2010
    Assignee: Applied Micro Circuits Corporation
    Inventor: Joseph Martin Patterson
  • Patent number: 7768338
    Abstract: A method is provided for the electronic processing of analog signals in thermaltronic device. The method accepts an analog input signal, e.g., an AC signal, at a thermaltronic device input and generates a thermal electric (TE) temperature having a first transfer function responsive to the input signal. As opposed to having a digital response, the transfer function is either linear or logarithmic. An analog output signal, e.g., an AC signal, is generated having a second transfer function responsive to the TE, which is likewise either linear or logarithmic.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: August 3, 2010
    Assignee: Applied Micro Circuits Corporation
    Inventor: Joseph Martin Patterson
  • Patent number: 7763947
    Abstract: A piezo thin-film diode (piezo-diode) cantilever microelectromechanical system (MEMS) and associated fabrication processes are provided. The method deposits thin-films overlying a substrate. The substrate can be made of glass, polymer, quartz, metal foil, Si, sapphire, ceramic, or compound semiconductor materials. Amorphous silicon (a-Si), polycrystalline Si (poly-Si), oxides, a-SiGe, poly-SiGe, metals, metal-containing compounds, nitrides, polymers, ceramic films, magnetic films, and compound semiconductor materials are some examples of thin-film materials. A cantilever beam is formed from the thin-films, and a diode is embedded with the cantilever beam. The diode is made from a thin-film shared in common with the cantilever beam. The shared thin-film may a film overlying a cantilever beam top surface, a thin-film overlying a cantilever beam bottom surface, or a thin-film embedded within the cantilever beam.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: July 27, 2010
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Changqing Zhan, Paul J. Schuele, John F. Conley, Jr., John W. Hartzell
  • Patent number: 7764732
    Abstract: Conventional adaptive equalizers often use the “sign/sign” algorithm as a low complexity means to adjust their tap weight coefficients by driving the correlation between its single-bit “error” and “data” signals to zero. This algorithm fails in the presence of strong residual intersymbol interference (ISI), since this ISI renders the “error” signal sufficiently inaccurate to mask the correlation between “data” and “error”. Failure manifests itself two-fold as an inability to achieve tap weight acquisition at startup, and an inability to track dynamic channel conditions. The invention described herein employs an adaptive estimator to compute the residual masking ISI terms that in turn control an adaptive error slicer to synthesize a modified single-bit “error” signal that remains correlated with the “data” signal.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: July 27, 2010
    Assignee: Applied Micro Circuits Corporation
    Inventors: Mark Edward Rollins, John Duncan McNicol
  • Patent number: 7759756
    Abstract: A dual-pixel full color complementary metal oxide semiconductor (CMOS) imager is provided, along with an associated fabrication process. Two stand-alone pixels are used for three-color detection. The first pixel is a single photodiode, and the second pixel has two photodiodes built in a stacked structure. The two photodiode stack includes an n doped substrate, a bottom photodiode, and a top photodiode. The bottom photodiode has a bottom p doped layer overlying the substrate and a bottom n doped layer cathode overlying the bottom p doped layer. The top photodiode has a top p doped layer overlying the bottom n doped layer and a top n doped layer cathode overlying the top p doped layer. The single photodiode includes the n doped substrate, a p doped layer overlying the substrate, and an n doped layer cathode overlying the p doped layer.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: July 20, 2010
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jong-Jan Lee, Sakae Wada, Sheng Teng Hsu
  • Patent number: 7759736
    Abstract: A deposition oxide interface with improved oxygen bonding and a method for bonding oxygen in an oxide layer are provided. The method includes depositing an M oxide layer where M is a first element selected from a group including elements chemically defined as a solid and having an oxidation state in a range of +2 to +5, plasma oxidizing the M oxide layer at a temperature of less than 400° C. using a high density plasma source, and in response to plasma oxidizing the M oxide layer, improving M-oxygen bonding in the M oxide layer. The plasma oxidation process diffuses excited oxygen radicals into the oxide layer. The plasma oxidation is performed at specified parameters including temperature, power density, pressure, process gas composition, and process gas flow. In some aspects of the method, M is silicon, and the oxide interface is incorporated into a thin film transistor.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: July 20, 2010
    Assignee: Sharp Laboratories of America, Inc.
    Inventor: Pooran Chandra Joshi
  • Patent number: 7759150
    Abstract: A nanorod sensor with a single plane of horizontally-aligned electrodes and an associated fabrication method are provided. The method provides a substrate and forms an intermediate electrode overlying a center region of the substrate. The intermediate electrode is a patterned bottom noble metal/Pt/Ti multilayered stack. TiO2 nanorods are formed over the substrate and intermediate electrode, and a TiO2 film may be formed overlying the TiO2 nanorods. The TiO2 nanorods and TiO2 film are formed in-situ, in the same process, by varying the substrate temperature. In other aspects, the TiO2 film is formed between the nanorods and the intermediate electrode. In yet another aspect, the TiO2 film is formed both above and below the nanorods. A single plane of top electrodes is formed overlying the TiO2 film from a top noble metal/Pt/Ti multilayered stack overlying the TiO2 film, which has been selectively etched to form separate top electrodes.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: July 20, 2010
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Fengyan Zhang, Bruce D. Ulrich, Wei Pan, Lawrence J. Charneski, Sheng Teng Hsu
  • Patent number: 7746855
    Abstract: A system and method have been provided for programming synchronization features of a multidimensional digital frame structure. Such a frame structure acts as a digital wrapper and includes overhead, payload, and forward error correction (FEC) sections. Words in the overhead section are used to selectively synchronize the broadcast frame structure at a plurality of network nodes. The described invention permits the frame synchronization bytes (FSBs) to be made programmable, so that the system and method are flexible for changes in communication protocols, as well for the selective exclusion of nodes. This flexibility also impacts the number, the location, bandwidth, and the bit error rate (BER) of the located FSBs.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: June 29, 2010
    Assignee: Applied Micro Circuits Corporation
    Inventors: George Beshara Bendak, Alan Michael Sorgi
  • Patent number: 7739375
    Abstract: In a UPnP network, a system and method have been provided for multicasting a byebye message by proxy. The method comprises: maintaining a list of available networked devices; maintaining a record of advertised UPnP elements; comparing the list of available networked devices to the record of advertised UPnP elements; and, multicasting a byebye message by proxy, for advertised UPnP elements associated with networked devices that are no longer available. The comparison of the list of available networked devices to the record of UPnP elements includes determining advertised UPnP elements in the record that cannot be cross-referenced to available networked devices. The method further comprises removing UPnP elements from the record in response to the comparison.
    Type: Grant
    Filed: May 10, 2004
    Date of Patent: June 15, 2010
    Assignee: Sharp Labratories of America, Inc.
    Inventor: Daryl James Hlasny
  • Patent number: 7737391
    Abstract: A double-junction complimentary metal-oxide-semiconductor (CMOS) filterless color imager cell is provided. The imager cell is fabricated from a silicon-on-insulator (SOI) substrate including a silicon (Si) substrate, a silicon dioxide insulator overlying the substrate, and a Si top layer overlying the insulator. A photodiode set is formed in the SOI substrate, including a first and second photodiode formed as a double-junction structure in the Si substrate. A third photodiode is formed in the Si top layer. A (imager sensing) transistor set is formed in the top Si layer. The transistor set is connected to the photodiode set and detects an independent output signal for each photodiode. The transistor set may be an eight-transistor (8T), a nine-transistor (9T), or an eleven-transistor (11T) cell.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: June 15, 2010
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Jong-Jan Lee
  • Patent number: 7734963
    Abstract: A system and method are provided for non-causal channel equalization in a communications system. The method comprises: establishing three thresholds; receiving a binary serial data stream; comparing the first bit estimate in the data stream to a second bit value received prior to the first bit; comparing the first bit estimate to a third bit value received subsequent to the first bit; data stream inputs below the first threshold and above the third threshold are a “0” if both the second and third bits are “1” values, and as a “1” if either of the second and third values is a “1”; data stream inputs above the second threshold and below the third threshold are a “1” if both the second and third bits are a “0” value, and as a “0” if either of the second and third values is a “0”.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: June 8, 2010
    Assignee: Applied Micro Circuits Corporation
    Inventors: Omer Fatih Acikel, Warm Shaw Yuan, Alan Michael Sorgi
  • Patent number: 7723242
    Abstract: A method is provided for additionally oxidizing a thin-film oxide. The method includes: providing a substrate; depositing an MyOx (M oxide) layer overlying the substrate, where M is a solid element having an oxidation state in a range of +2 to +5; treating the MyOx layer to a high density plasma (HDP) source; and, forming an MyOk layer in response to the HDP source, where k>x. In one aspect, the method further includes decreasing the concentration of oxide charge in response to forming the MyOk layer. In another aspect, the MyOx layer is deposited with an impurity N, and the method further includes creating volatile N oxides in response to forming the MyOk layer. For example, the impurity N may be carbon and the method creates a volatile carbon oxide.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: May 25, 2010
    Assignee: Sharp Laboratories of America, inc.
    Inventors: Pooran Chandra Joshi, Apostolos T. Voutsas, John W. Hartzell
  • Patent number: 7723781
    Abstract: A method is provided for forming a low-temperature vertical gate insulator in a vertical thin-film transistor (V-TFT) fabrication process. The method comprises: forming a gate, having vertical sidewalls and a top surface, overlying a substrate insulation layer; depositing a silicon oxide thin-film gate insulator overlying the gate; plasma oxidizing the gate insulator at a temperature of less than 400° C., using a high-density plasma source; forming a first source/drain region overlying the gate top surface; forming a second source/drain region overlying the substrate insulation layer, adjacent a first gate sidewall; and, forming a channel region overlying the first gate sidewall, in the gate insulator interposed between the first and second source/drain regions. When the silicon oxide thin-film gate insulator is deposited overlying the gate a Si oxide layer, a low temperature deposition process can be used, so that a step-coverage of greater than 65% can be obtained.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: May 25, 2010
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Pooran Chandra Joshi, Apostolos T. Voutsas, John W. Hartzell
  • Patent number: 7723729
    Abstract: A compound semiconductor-on-silicon (Si) wafer with a Si nanowire buffer layer is provided, along with a corresponding fabrication method. The method forms a Si substrate. An insulator layer is formed overlying the Si substrate, with Si nanowires having exposed tips. Compound semiconductor is selectively deposited on the Si nanowire tips. A lateral epitaxial overgrowth (LEO) process grows compound semiconductor from the compound semiconductor-coated Si nanowire tips, to form a compound semiconductor layer overlying the insulator. Typically, the insulator layer overlying the Si substrate is a thermally soft insulator (TSI), silicon dioxide, or SiXNY, where x?3 and Y?4. The compound semiconductor can be GaN, GaAs, GaAlN, or SiC. In one aspect, the Si nanowire tips are carbonized, and SiC is selectively deposited overlying the carbonized Si nanowire tips, prior to the selective deposition of compound semiconductor on the Si nanowire tips.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: May 25, 2010
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Sheng Teng Hsu
  • Patent number: 7723913
    Abstract: A silicon (Si) nanocrystal embedded Si oxide electroluminescence (EL) device and associated fabrication process are presented. The method provides a substrate bottom electrode, and forms a plurality of Si nanocrystal embedded SiOx film layers overlying the bottom electrode, where X is less than 2. Each SiOx film layer has a Si excess concentration in a range of about 5 to 30%. The outside film layers sandwich an inner film layer having a lower concentration of Si nanocrystals. Alternately stated, the outside Si nanocrystal embedded SiOx film layers have a higher electrical conductivity than a sandwiched inner film layer. A transparent top electrode is formed over the plurality of Si nanocrystal embedded SiOx film layers. The plurality of Si nanocrystal embedded SiOx film layers are deposited using a high density plasma-enhanced chemical vapor deposition (HD PECVD) process. The HD PECVD process initially deposits SiOx film layers, which are subsequently annealed.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: May 25, 2010
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Vincenzo Casasanta, Apostolos T. Voutsas, Pooran Chandra Joshi
  • Patent number: 7720100
    Abstract: An information packet preclassification system and method are provided. The method receives a packet of information and differentiates the packet into segments. Using a decision tree with multiple levels, segments in the packet are compared to a node at a tree level, where each node includes a plurality of node reference segments and corresponding node comparison operators. The reference segment may be a different segment from the packet, or a predetermined segment value stored in memory. One, or more classification attributes are accessed in response to comparing segments, and the classification attributes are assigned to the packet. Then, the packet is processed in response to the classification attributes.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: May 18, 2010
    Assignee: Applied Micro Circuits Corporation
    Inventors: Alexander Sgouros, Leonard Bush, Christopher Dean Bergen, Sourav Chakrabroty
  • Patent number: 7720189
    Abstract: A system and method are provided for automatically acquiring a serial data stream clock. The method receives a serial data stream with an unknown clock frequency and coarsely determines the clock frequency. The frequency is coarsely determined by (initially) selecting a high frequency first reference clock (Fref1), and counting the number of data transitions in a first time segment of the serial data stream at a plurality of sample frequencies equal to Fref1/n, where n is an integer?1. The count for each sampling frequency is compared to the count for Fref1 (n=1). Next, the highest sampling frequency (n=x) is determined, which has a lower count than Fref1, and the coarse clock frequency is set to Fc1 =Fref1/(x?1).
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: May 18, 2010
    Assignee: Applied Micro Circuits Corporation
    Inventors: Viet Linh Do, Mehmet Mustafa Eker, Simon Pang
  • Patent number: 7714354
    Abstract: A method is provided for electroforming metal integrated circuit structures. The method comprises: forming an opening such as a via or line through an interlevel insulator, exposing a substrate surface; forming a base layer overlying the interlevel insulator and substrate surface; forming a strike layer overlying the base layer; forming a top layer overlying the strike layer; selectively etching to remove the top layer overlying the substrate surface, exposing a strike layer surface; and, electroforming a metal structure overlying the strike layer surface. The electroformed metal structure is deposited using an electroplating or electroless deposition process. Typically, the metal is Cu, Au, Ir, Ru, Rh, Pd, Os, Pt, or Ag. The base, strike, and top layers can be deposited using physical vapor deposition (PVD), evaporation, reactive sputtering, or metal organic chemical vapor deposition (MOCVD).
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: May 11, 2010
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: David R. Evans, John W. Hartzell