Abstract: A nuclear fuel material green body of density from about 30 to 70% of theoretical density having tensile strenght and plasticity adequate to maintain the integrity of the body during processing leading to ultimate sintered condition is produced by adding an amine carbonate or carbamate or mixture thereof to a particulate mass of the nuclear fuel material under conditions resulting in reaction with the amine compound to form a water-soluble compound effective as a binder for the particulate material.
Type:
Grant
Filed:
December 17, 1981
Date of Patent:
January 24, 1984
Assignee:
General Electric Company
Inventors:
George L. Gaines, Jr., Patricia A. Piacente, William J. Ward, III, Peter C. Smith, Timothy J. Gallivan, Harry M. Laska
Abstract: A method is disclosed for predetermining the magnitude of the average release peel strength at the interface between a vapor deposited copper film and a flexible aluminum carrier sheet to which the copper has been previously directly applied. The resulting copper-to-aluminum adherence is due to the formation of a preferential diffusion bond.
Abstract: An electrochemical apparatus and a testing procedure are described for predicting the susceptibility of certain zirconium-base alloys to nodular corrosion in boiling water reactor environments. A chemically polished pre-determined area of the surface of the zirconium-base alloy is made the anode in an electrochemical cell. A constant direct current (d-c) having an alternating current (a-c) superimposed thereon is applied to the cell and the quadrature component of the a-c cell voltage is monitored in order to measure the value of the depth of the minimum occurring in the quadrature component of the a-c cell voltage-versus-time relationship after a d-c cell voltage of at least eight volts has been reached. The application of a-c to the cell is stopped and the constant d-c previously applied is decreased by a a step-change to a constant value providing a reduction of at least one-half in the current density.
Abstract: This invention provides zirconium stabilized corrosion-resistant ferritic stainless steels particularly suitable for long-term use at moderate service temperatures in the as-welded condition or following a high temperature anneal.
Abstract: Ammonia is used in the hardening of steels in a nitriding process which is controlled to limit or prevent formation of undesired iron nitrides by measuring the difference between input and output gas flow rates to and from the nitriding chamber and adjusting the input gas composition and/or flow rate in response to that difference to provide a predetermined desired composition of the nitriding atmosphere in the chamber.
Abstract: A self-lubricating cemented carbide cutting tool of special utility in titanium machining having a copper coating bearing a film of copper iodide is provided by coating the tool with a layer of copper, heating to bond the copper to the cemented carbide and thereafter reacting the copper with iodine to form the film of desired thickness.
Type:
Grant
Filed:
January 5, 1981
Date of Patent:
October 25, 1983
Assignee:
General Electric Company
Inventors:
Minyoung Lee, William R. Reed, Jr., Lawrence E. Szala
Abstract: This invention provides two stabilized corrosion-resistant ferritic stainless steels particularly suitable for long term use as tubing in the service environments frequently found in moisture separator reheater and feedwater preheater equipment in the steam supply systems of commercial electrical power generating stations.
Abstract: Tensile strength and ductility of copper-base alloys having poor intermediate temperature range ductility are substantially increased by relatively small alloying additions of hafnium or zirconium.
Abstract: A well-bonded polycrystalline cubic boron nitride body is produced by providing the cubic boron nitride particles with a discontinuous coating of tungsten or molybdenum and then infiltrating them in a mass with molten silicon or silicon-base alloy.
Abstract: A nuclear fuel material green body of density from about 30 to 70% of theoretical density having tensile strength and plasticity adequate to maintain the integrity of the body during processing leading to ultimate sintered condition is produced by adding one or more amines to a particulate mass of the nuclear fuel containing about five percent of ammonium uranyl carbonate under conditions resulting in reaction of the amine with the ammonium uranyl carbonate, liberation of ammonia and formation of a water-soluble uranyl compound more effective as a binder than the ammonium uranyl carbonate.
Type:
Grant
Filed:
June 15, 1981
Date of Patent:
June 21, 1983
Assignee:
General Electric Company
Inventors:
George L. Gaines, Jr., William J. Ward, III
Abstract: A copper-clad laminate having special utility in the production of high resolution printed circuit patterns by either subtractive or semi-additive processing is made by vapor depositing a film of zinc on a copper film on a silica-coated aluminum carrier sheet, vapor depositing a silica film on the resulting zinc-copper foil, bonding the resulting body to a substrate and then stripping the silica-coated aluminum carrier sheet from the copper-clad laminate.
Type:
Grant
Filed:
September 22, 1980
Date of Patent:
May 10, 1983
Assignee:
General Electric Company
Inventors:
Eric Lifshin, Joseph D. Cargioli, Stephen J. Schroder, Joe Wong
Abstract: A polycrystalline diamond body infiltrated by a silicon atom-containing metal (e.g., silicon alloy) is bonded to a substrate comprising cemented carbide with a barrier of refractory material extending between the diamonds cemented together with silicon atom-containing binder and the substrate substantially precluding migration of the cementing medium (e.g., cobalt) from the carbide substrate into contact with the silicon atom-containing bonding medium in the diamond body. The process comprises subjecting a mass of diamond powder, a quantity of silicon atom-containing metal binder material, a cemented carbide body and a barrier made of material selected from the group consisting of tantalum, vanadium, molybdenum, zirconium, tungsten and alloys thereof to the simultaneous application of elevated temperature and pressure.
Type:
Grant
Filed:
January 5, 1981
Date of Patent:
April 19, 1983
Assignee:
General Electric Company
Inventors:
Minyoung Lee, Lawrence E. Szala, Roy E. Tuft
Abstract: An ultrathin polyphenylene oxide/organopolysiloxane-polycarbonate copolymer film is described wherein the film contains from about 10 to about 35 percent by weight of the organopolysiloxane-polycarbonate copolymer.
Abstract: A process for simultaneously (1) cementing particles of cubic boron nitride (CBN) together, (2) bonding particles of ceramic together to form a substrate, or support layer, for the cemented CBN particles and bonding the cemented CBN particles to the substrate is described. Substrates consisting essentially of compatible combinations of ceramic particles and an aluminum-base bonding medium are disclosed.
Abstract: A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a composite cladding having a substrate and a metal barrier metallurgically bonded on the inside surface of the substrate so that the metal barrier forms a shield between the substrate and the nuclear fuel material held within the cladding. The metal barrier forms about 1 to about 30 percent of the thickness of the cladding and is comprised of a low neutron absorption metal of substantially pure zirconium. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the substrate from contact and reaction with such impurities and fission products. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy. Methods of manufacturing the composite cladding are also disclosed.
Abstract: Zirconium-base alloy channels, fuel cladding tubes and other nuclear reactor structural components having unique resistance to accelerated pustular corrosion in the boiling water reactor environment are produced by a sequence of heat treatments causing segregation of intermetallic particulate precipitate phase in two dimensional arrays of particles of diameter from 100 to 400 Angstroms located along grain boundaries and sub-grain boundaries throughout the alloy body.
Abstract: A copper-clad laminate having special utility in printed circuit board production because of its extremely smooth and virtually pinhole-free surface is made by vapor depositing a copper film on a layer of silica on an aluminum carrier sheet, electrodepositing a layer of copper on the film to form a foil, bonding the foil to a substrate and finally stripping the foil and substrate laminate from the silica-coated carrier sheet.
Type:
Grant
Filed:
August 22, 1980
Date of Patent:
November 2, 1982
Assignee:
General Electric Company
Inventors:
Eric Lifshin, Joseph D. Cargioli, Stephen J. Schroder, Joe Wong
Abstract: A well-bonded polycrystalline cubic boron nitride body is produced by providing the cubic boron nitride particles with a discontinuous coating of tungsten or molybdenum and then infiltrating them in a mass with molten silicon or silicon-base alloy.
Abstract: A process for simultaneously cementing diamond fines together and bonding the cemented diamonds to a silicon-silicon carbide composite is described. During the process the silicon-silicon-carbide composite furnishes silicon for the cementing and bonding function and the silicon-silicon carbide composite provides for the structural stability of the resulting article. The process comprises placing a quantity of diamond powder and a mass of silicon-silicon carbide composite adjacent to each other, packing such material to form a stabilized geometry, heating the stabilized geometry in an inert atmosphere, and simultaneously applying pressure thereto.
Abstract: Tungsten anode targets are joined to graphite substrates by a brazing method employing a .[.controlled.]. .Iadd.hydrogen .Iaddend.atmosphere and a suitable braze material such as platinum and an alloy of platinum and chromium.