Patents Represented by Attorney Linda K. Russell
  • Patent number: 6508053
    Abstract: The present invention relates to an air separation plant integrated with another process. Work is recovered from a nitrogen enriched stream produced by an air separation process either by expanding the nitrogen enriched stream directly or by combustion of the nitrogen enriched stream with a fuel stream and expanding gas produced by the combustion.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: January 21, 2003
    Assignees: L'Air Liquide-Societe Anonyme a'Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude, Air Liquide Process and Construction, Inc.
    Inventors: Bao Ha, Jean-Renaud Brugerolle, Alain Guillard, Giovanni Massimo, Bernard Saulnier
  • Patent number: 6505482
    Abstract: Provided are a system and method for nitrous oxide purification, wherein the nitrous oxide product is for use in semiconductor manufacturing. The system and process involve a first sub-system having a purification tank for holding a liquefied nitrous oxide, therein; a vaporizer in communication with the purification tank to receive, vaporize and convey a nitrous oxide vapor back to the purification tank; a distillation column disposed on a distal end of the purification tank to receive a nitrous oxide vapor; a condenser disposed on the distillation column, wherein light impurities are removed and wherein a nitrous oxide devoid of light impurities is conveyed and converted into vapor in the vaporizer. A second sub-system having a first dry bed vessel is disposed downstream of the vaporizer to receive the vapor and reacting the acid gas therein; a second dry bed vessel is disposed downstream of the first dry bed vessel for removing water and ammonia in the vapor.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: January 14, 2003
    Assignees: L'Air Liquide - Societe Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes George Claude, Air Liquide America, L.P.
    Inventors: Derong Zhou, John P. Borzio, Earle Kebbekus, David Miner
  • Patent number: 6491863
    Abstract: Methods and apparatus for efficient utilization of a cryogen in inerting of solid and molten metals are presented. One method and apparatus of the invention includes providing a source of liquid cryogen; transporting the liquid cryogen through a conduit connected to the source of liquid cryogen to a gas/liquid separator, wherein a portion of the liquid cryogen transforms into gaseous cryogen en route; transporting a portion of the liquid cryogen through a first conduit connecting the gas/liquid separator to a cryogen supply nozzle; transporting the gaseous cryogen through a second conduit connecting the gas/liquid separator to a cryogen supply nozzle; and flowing at least a portion of liquid cryogen and at least a portion of the gaseous cryogen through the cryogen nozzle separately and near a surface of solid or molten metal. Thus liquid that transforms into gaseous cryogen en route from storage is not vented and not wasted, but used in inerting of solid or molten metals.
    Type: Grant
    Filed: December 12, 2000
    Date of Patent: December 10, 2002
    Assignees: L'Air Liquide-Societe' Anonyme a' Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes George Claude, Air Liquide America Corporation
    Inventor: Stewart C. Jepson
  • Patent number: 6493086
    Abstract: Provided is a novel chamber effluent monitoring system. The system comprises a chamber having an exhaust line connected thereto. The exhaust line includes a sample region, wherein substantially all of a chamber effluent also passes through the sample region. The system further comprises an absorption spectroscopy measurement system for detecting a gas phase molecular species. The measurement system comprises a light source and a main detector in optical communication with the sample region through one or more light transmissive window. The light source directs a light beam into the sample region through one of the one or more light transmissive window. The light beam passes through the sample region and exits the sample region through one of the one or more light transmissive window. The main detector responds to the light beam exiting the sample region.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: December 10, 2002
    Assignees: American Air Liquide, Inc., L'Air Liquide-Societe Anonyme a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: James McAndrew, Hwa-Chi Wang, Benjamin J. Jurcik, Jr.
  • Patent number: 6485769
    Abstract: Methods and apparatus are provided for decreasing the bacteria count of a food commodity without affecting its overall organoleptic quality (taste, odor, and color). This is accomplished using a treatment fluid comprising ozone, which is injected into a treatment chamber containing the food commodity. Some water is preferably added to obtain better contact of the ozone with the food by forming a thin film of ozonated water on the food surface. Spices and/or other ingredients may preferably be added with the water. The food is placed in a tumbler and the tumbler is set in motion. During treatment good contact between the treatment fluid and the food commodity is obtained by reversibly oscillating the tumbler. A log reduction of 40% or more in bacteria count may be obtained as compared without the ozone.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: November 26, 2002
    Assignees: Air Liquide Canada, Inc., American Air Liquide, Inc., L 'Air Liquide-Societe 'Anonyme a 'Directoire et Conseil de Surveillance pour l 'Etude et L'Exploitation des Procedes Georges Claude
    Inventors: Stephane Audy, Fabrice Laberge, Edward F. Steiner, James T. C. Yuan
  • Patent number: 6471735
    Abstract: Provided are methods for making a slurry composition, suitable for use in a chemical-mechanical planarization process. Also provided are compositions made by such methods. The methods comprise combining: (a) abrasive particles; (b) a suspension medium; (c) a peroxygen compound; (d) an etching agent; and (e) an alkyl ammonium hydroxide. The methods and compositions of the present invention are particularly applicable to the semiconductor manufacturing industry.
    Type: Grant
    Filed: August 8, 2000
    Date of Patent: October 29, 2002
    Assignee: Air Liquide America Corporation
    Inventors: Ashutosh Misra, Joe G. Hoffman, Anthony J. Schleisman
  • Patent number: 6468446
    Abstract: Methods and apparatus for preparing gaseous compositions comprising a metal carbonyl, preferably at ppm concentration, are disclosed. The methods comprise placing metal, preferably in the form of filings, of the metal carbonyl to be produced into a first test vessel at a first temperature, and then pressurizing the first test vessel with a gas comprising carbon monoxide from a carbon monoxide source vessel. The contents of the first vessel are then heated to a second temperature and at a rate sufficient to initiate metal carbonyl formation, thereby forming a gas composition comprising a metal carbonyl. The reaction is then quenched by transferring some of the gas composition comprising a metal carbonyl from the first test vessel to a second test vessel which is at a third temperature, the third temperature being lower than the second temperature. Finally, the gas composition is diluted in the second test vessel with an inert gas (preferably argon) from an inert gas source container.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: October 22, 2002
    Assignees: American Air Liquide, Inc., L'Air Liquide-Societe' Anonyme a'Directoire et Conseil de Surveillance pour l'Etude et l'Explotiation des Procedes George Claude
    Inventors: Tracey Jacksier, Reha Tepe, David N. Vassallo
  • Patent number: 6468833
    Abstract: This invention is related to a method for encapsulating bond regions in electronic components comprising, for example, metallic bond regions, the method comprising the steps of exposing an electronic component having at least one bond region through a primary gas atmosphere comprising unstable or excited gaseous species, the gaseous species being substantially devoid of any electrical charges, the primary gas atmosphere having a pressure ranging from about 0.5×105 Pa to about 3.0×105 Pa, thereby forming a treated, non-encapulated electronic component, then encapsulating the electronic component.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: October 22, 2002
    Assignees: American Air Liquide, Inc., L'Air Liquide, Societe Anonyme pour l'Etude et l'Exloitation des Procedes Georges Claude
    Inventors: Jason R. Uner, Thierry Sindzingre, Claude Carsac
  • Patent number: 6458217
    Abstract: Systems useful for superadiabatic combustion generation of a reducing atmosphere for metal heat treatment include a superadiabatic reactor which supplies a reducing atmosphere to a metal heat treatment apparatus. In one aspect, the reactor includes a porous medium and a start-up heater in the flow path of the gas that is to be heated. In another aspect, the gas is passed through a porous medium in alternating, opposite directions by the control of valves which lead the gas to and from the medium. In yet another aspect, a gas inflow pipe leads into an insulated porous bed from which the gas flows in a counter flow manner around the inflow pipe.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: October 1, 2002
    Assignee: American Air Liquide, Inc.
    Inventor: Yao-En Li
  • Patent number: 6454562
    Abstract: A process controls oxy-boost firing and air-fuel burner firing in furnaces, including large glass furnaces such as float furnaces. The large side-fired regenerative float furnaces use oxy-boost firing for a variety of reasons, including production increase, improved glass quality, lowering of superstructure temperatures, and reduction of emissions. An adaptive controller receives input data from process parameter sensors throughout the furnace, and adjusts its control logic for controlling both the oxy-boost burners and the air-fuel port burners.
    Type: Grant
    Filed: April 20, 2000
    Date of Patent: September 24, 2002
    Assignees: L'Air Liquide-Societe' Anonyme a' Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude, American Air Liquide, Inc.
    Inventors: Mahendra L. Joshi, Ovidiu Marin
  • Patent number: 6444011
    Abstract: Processes and systems to recover at least one perfluorocompound gas from a gas mixture are provided. In one embodiment the inventive process comprises the steps of a) providing a gas mixture comprising at least one perfluorocompound gas and at least one carrier gas, the gas mixture being at a predetermined pressure; b) providing at least once glassy polymer membrane having a feed side and a permeate side; c) contacting the feed side of the at least one membrane with the gas mixture; d) withdrawing from the feed side of the membrane as a non-permeate stream at a pressure which is substantially equal to the predetermined pressure a concentrated gas mixture comprising essentially the at least one perfluorocompound gas; and e) withdrawing from the permeate side of the membrane as a permeate stream a depleted gas mixture comprising essentially the at least one carrier gas.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: September 3, 2002
    Assignee: American Air Liqide, Inc.
    Inventors: Yao-En Li, Jospeh E. Paganessi, David Vassallo, Gregory K. Fleming
  • Patent number: 6439266
    Abstract: A system for damping pressure pulses is provided, including a channel for permitting fluid flow between a first chamber and a second chamber, a piston for varying a fluid flowing space such that pressure pulses in fluid are damped, and a flexible wall for absorbing pressure pulses in fluid, wherein the flexible wall is connected to the piston by a transmitting rod such that a movement of the piston results in a deformation of the flexible wall and vice versa.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: August 27, 2002
    Assignee: American Air Liquide, Inc.
    Inventors: Mindi Xu, Shei-Kai Chang
  • Patent number: 6431467
    Abstract: A low firing rate oxy-fuel burner which may be comprised of commercially available standard components and which includes an oxidant conduit and a fuel conduit within the oxidant conduit. The fuel conduit has a fuel nozzle at the forward end thereof with a fuel swirler in the form of a twist drill positioned therein which is maintained in a an aerodynamically centered position by the flowing fuel stream. The oxidant conduit has an oxidant nozzle at the forward end thereof with an oxidant swirler in the form of helical spring position therein and surrounding the fuel nozzle.
    Type: Grant
    Filed: January 7, 2000
    Date of Patent: August 13, 2002
    Assignee: American Air Liquide, Inc.
    Inventors: Mahendra L. Joshi, Donald J. Fournier, Jr.
  • Patent number: 6418865
    Abstract: A method for operating a boiler using oxygen-enriched oxidants includes introducing oxygen-enriched air, or oxygen and air, in which the oxygen concentration ranges from about 21% to about 100% by volume. Fuel and oxygen-enriched air are introduced into the combustion space within the steam-generating boiler. The fuel and oxygen-enriched air is combusted to generate thermal energy. At least a portion of the flue gases are collected and at least a portion are recirculated through the boiler. In the steam-generating boiler, the oxygen-enriched oxidant is introduced at one or more locations within the radiation zone and the convection zone of the boiler. Additionally, flue gas is collected and recirculated into one or more locations within the radiation zone and/or the convection zone of the boiler.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: July 16, 2002
    Assignee: American Air Liquide
    Inventors: Ovidiu Marin, Oliver Charon
  • Patent number: 6421127
    Abstract: Provided are novel methods of preventing deposition on an optical component in an absorption spectroscopy measurement cell. The methods involve performing an absorption spectroscopy measurement of a sample gas introduced into the cell, and introducing a flow of purge gas from a purge gas inlet pipe across a critical surface of the optical element at a velocity effective to prevent deposition on the critical surface. The gas inlet is disposed adjacent said critical surface. Also provided are devices for practicing the inventive method, measurement cells useful in absorption spectroscopy measurements, apparatuses for performing an absorption spectroscopy measurement and semiconductor processing apparatuses. The invention allows for the performance of accurate spectroscopic measurements. Because deposits are prevented from forming on the surface of an optical element, interference therefrom can effectively be avoided.
    Type: Grant
    Filed: July 11, 2000
    Date of Patent: July 16, 2002
    Assignee: American Air Liquide, Inc.
    Inventors: James J. F. McAndrew, Benjamin Jurcik, Carol Schnepper, Ronald Inman, Dmitry Znamensky, Tracey Jacksier
  • Patent number: 6395064
    Abstract: Provided is a novel system for vaporizing and purifying a gas to produce ultrapure chemical gases employed at a semiconductor processing facility. The system includes a liquified gas source, a vaporization purification bed, and a buffer tank. The liquefied gas source is in communication with the vaporization purification bed to provide a liquefied gas to the bed with an ultra-pure chemical gas generated in the purification bed. The purified gas is subsequently routed to a buffer tank and to a point of use therefrom.
    Type: Grant
    Filed: October 26, 1999
    Date of Patent: May 28, 2002
    Assignee: American Air Liquide, INC
    Inventors: Mindi Xu, Richard Udischas, Carol Schnepper, Joseph Paganessi
  • Patent number: 6389845
    Abstract: A method and apparatus for the separation and recovery of SF6 from a gas mixture consisting essentially of SF6, CF4, and N2. The method and apparatus involve membrane separation to separate N2 from SF6 and CF4, and liquefaction to separate SF6 from CF4.
    Type: Grant
    Filed: March 8, 2000
    Date of Patent: May 21, 2002
    Assignee: American Air Liquide, Inc.
    Inventor: Yao-En Li
  • Patent number: 6392745
    Abstract: A method and apparatus for quickly detecting the surface characteristics of a surface, such as features, anomalies or contaminants are disclosed. The method and apparatus use heterogeneous condensation of a vapor on a surface and evaporation to reveal the surface characteristics of the surface and thereby enable the detection of such features.
    Type: Grant
    Filed: June 13, 2000
    Date of Patent: May 21, 2002
    Assignee: American Air Liquide, Inc.
    Inventors: Rashid Mavliev, Hwa-Chi Wang
  • Patent number: 6387161
    Abstract: Provided are a system and method for nitrous oxide purification, wherein the nitrous oxide product for use in semiconductor manufacturing. The system and process involve a first sub-system having a purification tank for holding a liquefied nitrous oxide, therein; a vaporizer in communication with the purification tank to receive, vaporize and convey a nitrous oxide vapor back to the purification tank; a distillation column disposed on a distal end of the purification tank to receive a nitrous oxide vapor; a condenser disposed on the distillation column, wherein light impurities are removed and wherein a nitrous oxide devoid of light impurities is conveyed and converted into vapor in the vaporizer. A second sub-system having a first dry bed vessel is disposed downstream of the vaporizer to receive the vapor and reacting the acid gas therein; a second dry bed vessel downstream of the first dry bed vessel for removing water and ammonia in the vapor.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: May 14, 2002
    Assignee: American Air Liquide, Inc.
    Inventors: Derong Zhou, John P. Borzio, Earle Kebbekus, David Miner
  • Patent number: 6361750
    Abstract: Processes are disclosed for increasing the condensed phase production of BCl3 comprising less than about 10 ppm phosgene, less than 10 ppm chlorine, and less than 10 ppm HCl. In one embodiment the process comprises injecting an inert gas into a container having condensed BCl3 therein, the condensed BCl3 having therein a minor portion of phosgene impurity. A major portion of the phosgene in the condensed BCl3 is decomposed to carbon monoxide and chlorine by increasing temperature to produce a phosgene deficient stream. The temperature of the phosgene deficient stream is then decreased, and contacted with an adsorbent to remove the chlorine in the stream by adsorption to form a chlorine and phosgene free condensed stream. The chlorine and phosgene free stream is stripped using an inert gas to form a BCl3 product condensed stream, and an inert gas is used to pump the BCl3 product condensed stream to a product receiver.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: March 26, 2002
    Assignees: Air Liquide America Corporation, American Air Liquide, Inc.
    Inventors: Derong Zhou, Gregory M. Jursich, Earle R. Kebbekus, John P. Borzio, Jason R. Uner