Abstract: The present invention provides improved optical switches in which only a spatial beam shifting of a small free space offset is required to direct optical pathways between plural fiber ports. This is achieved by spacing two fibers closely and collimating their beams with one imaging lens for compactness. Advantageously, the inventive switches incorporate beam correcting devices to render the beam propagations parallel, allowing light beams to be efficiently coupled into two fibers that share a single lens with substantially improved stability.
Abstract: The present invention provides improved optical switches in which no mechanical movement is required to direct optical pathways between plural fiber ports. Advantageously, the inventive switches incorporate two-stage polarization rotation to improve isolation depth, as well as temperature and wavelength independence. The inventive switches also incorporate light bending devices to allow two fibers to be coupled to the light beams using a single lens achieving small beam separation for compactness. In the inventive switch, an optical signal is spatially split into two polarized beams by a birefringent element, which passes through a polarization rotation device that comprises waveplates, walk-off elements, and electrically controllable polarization rotators, and recombine into an output fiber, achieving polarization independent operation.
Abstract: A method and apparatus for location finding in a CDMA wireless communication system uses multipath signals in order to accurately determine a transmitter—s location. Direct path and multipath signals from a mobile transmitter arrive at an array of p antennas belonging to a cellular network base station. A location finding apparatus connected to the base station contains a multichannel receiver that uses PN sequence information provided by the base station receiver to despread the p signals and to separate each of the p signals into temporally distinct multipath parts. A signal processor calculates a signal signature for each active mobile. The signature is comprises a code correlation function, a set of temporal delays corresponding to the multipath parts and a set of signal subspaces.
Type:
Grant
Filed:
September 14, 1998
Date of Patent:
June 19, 2001
Assignee:
U.S. Wireless Corporation
Inventors:
Mati Wax, Oliver Hilsenrath, Abraham Bar
Abstract: A handoff technique for wireless communication systems uses pattern recognition of signal strength data to anticipate handoffs and reduce the total number of handoffs in the system. A criterion for system performance is used in determining the necessity for handoff. A window of signal samples from nearby base stations constitutes a pattern vector which is classified using a probabilistic neural network or other learning machine. The use of averaged signals and the sequencing of classes allow for a small number of training vectors for the pattern classifier. Substantially increased performance requires only one training vector per class. Simulation results indicate that, for a given probability of failure, the pattern recognition based handoff technique yields fewer handoffs than the conventional hysteresis rule.
Type:
Grant
Filed:
September 9, 1999
Date of Patent:
May 29, 2001
Assignee:
The Board of Trustees of the Leland Stamford Junior
University