Abstract: Stoichiometric titanium disulfide having a high degree of crystalline perfection and particularly suited for use as an active cathode material is prepared by heating particulate metallic titanium to a reaction temperature between about 475.degree. and 600.degree. C., contacting the heated titanium with an atmosphere having a sulfur partial pressure substantially equal to the equilibrium sulfur partial pressure at the reaction temperature to form titanium disulfide, and maintaining the reactants at the reaction temperature sufficiently to insure complete reaction. A battery is described which employs a lithium anode, an electrolyte of lithium perchlorate dissolved in an organic solvent and stoichiometric titanium disulfide having a single hexagonal phase and a particle size surface area between about 2 and 4 square meters per gram.
Abstract: Ions are intercalated in chalcogenides by flowing a current through a system comprising a cathode which contains the chalcogenides (e.g., TaS.sub.2 is a suitable chalcogenide), an anode containing electronically conductive material which is not a source of the intercalating ions (a suitable anode material would be gold) and an electrolyte comprising or containing at least one ionically conducting material which will electrochemically release ions of the species which are to be intercalated in the chalcogenide (e.g., dilute HCl, in which case hydrogen ions would be intercalated in the chalcogenide). The voltage is applied at a level sufficient to permit electrochemical decomposition of the electrolyte to thereby release the ions to be intercalated into the chalcogenide. Alternatively, the anode may act as the source of the intercalating ions and the electrolyte would comprise or contain at least one compound of the same species as that of the ions to be intercalated (e.g.
Abstract: A battery is provided in which the anode contains as the anode-active material a metal selected from the group consisting of Group Ia metals, Group Ib metals, Group IIa metals, Group IIb metals, Group IIIa metals and Group IVa metals (lithium is preferred), the cathode contains as the cathode-active material a chalcogenide of the formula MZ.sub.x wherein M is an element selected from the group consisting of titanium, zirconium, hafnium, niobium, tantalum and vanadium (titanium is preferred); Z is an element selected from the group consisting of sulfur, selenium and tellurium, and x is a numerical value between about 1.8 and about 2.1, and the electrolyte is one which does not chemically react with the anode or the cathode and which will permit the migration of ions from said anode-active material to intercalate the cathode-active material.
Abstract: A high energy density electrochemical cell comprises an anode consisting essentially between about 63% and 92% lithium, on an atomic basis, and the balance essentially aluminum, a cathode and a nonaqueous electrolyte. Advantageously, the cathode is an electrochemically active transition metal chalcogenide, such as titanium disulfide, and the nonaqueous electrolyte is an organic solvent, such as dioxolane, having at least one lithium salt, preferably lithium perchlorate, dissolved therein.
Abstract: An improved electrochemical cell comprises an alkali metal anode, a cathode, an oxidant of at least one quaternary ammonium polyhalide salt, and a dipolar aprotic electrolyte containing an ionizable salt of an alkali metal. A specific example includes a lithium anode, a carbon cathode, a tetraalkylammonium tribromide salt and an electrolyte of one mole lithium hexafluoride dissolved in propylene carbonate, which cell provides an open circuit voltage of about 3.6 volts. The oxidant can be incorporated in the cathode structure or be added independently to the cell, e.g., by use of a circulating electrolyte.