Abstract: Disclosed is a process for treating oily wastes, which have a predominantly liquid phase, by mixing the oily waste with a granulating medium under turbulent flow conditions. The process comprises mixing the oily waste with a granulating medium under such conditions, wherein granules are formed having an attrition index of less than about 10 percent and a filtration index of greater than 0.20 gallons per minute per square foot. The contaminating hydrocarbons may then be removed by contacting the granules with a solvent capable of removing at least a portion of the contaminating hydrocarbons. The granules are then recovered by means known in the art.
Abstract: Disclosed is a process for recovering precious metals using a combination of smelting and an effective utilization of molten salt chlorination. More specifically, disclosed is a process including the steps of (i) contacting, for example, a matte with a chloride salt containing at least one of potassium, cesium or rubidium, but not sodium or lithium to form a matte/salt solids mixture, (ii) introducing the solids mixture into a chloride melt having a temperature ranging from 300.degree. C. to 650.degree. C., said melt containing at least one of potassium, cesium, rubidium, sodium or lithium, (iii) introducing a chlorine containing gas into the melt, and (iv) maintaining the salt ratio in the matte/salt mixture at a stoichiometrically equivalent amount with the precious metals and base metals contained in the matte.
Abstract: A method for preparing the zeolite SSZ-16 wherein the organic template used in the synthesis has the formula: ##STR1## wherein n is 3, 4, or 5.
Abstract: For a heavy hydrocarbonaceous feed, especially good hydrodemetalation and hydrodesulfurization are achieved, as well as MCR reduction, using a catalyst having 5 to 11 percent of its pore volume in the form of macropores, and a surface area greater than 75 m.sup.2 /g. Preferably the catalyst has a peak mesopore diameter greater than 165 .ANG., as determined by mercury porosimetry, and an average mesopore diameter greater than 160 .ANG..