Patents Represented by Attorney Margaret Chappuis
  • Patent number: 6602549
    Abstract: An indium precursor composition having utility for incorporation of indium in a microelectronic device structure, e.g., as an indium-containing film on a device substrate by bubbler or liquid delivery MOCVD techniques, or as a dopant species incorporated in a device substrate by ion implantation techniques. The precursor composition includes a precursor of the formula R1R2InL wherein: R1 and R2 may be same or different and are independently selected from C6-C10 aryl, C6-C10 fluoroaryl, C6-C10 perfluoroaryl, C1-C6 alkyl, C1-C6 fluoroalkyl, or C1-C6 perfluoroalkyl; and L is &bgr;-diketonato or carboxylate. Indium-containing metal films may be formed on a substrate, such as indium-copper metallization, and shallow junction indium ion-implanted structures may be formed in integrated circuitry, using the precursors of the invention.
    Type: Grant
    Filed: July 3, 2000
    Date of Patent: August 5, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Thomas H. Baum, Chongying Xu
  • Patent number: 6599870
    Abstract: The present invention comprises formulations for stripping wafer residues which originate from a halogen based plasma metal etching followed by oxygen plasma ashing. The formulations contain the following general components (percentages are by weight): Boric Acid  2-17% Organic amine or mixture of amines 35-70% Water 20-45% Glycol solvent (optional)  0-5% Chelating agent (optional)  0-17% The preferred amines are: Monoethanolamine (MEA) Triethanolamine (TEA).
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: July 29, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: William A. Wojtczak, George Guan, Long Nguyen
  • Patent number: 6600175
    Abstract: A light emitting assembly comprising a solid state device coupleable with a power supply constructed and arranged to power the solid state device to emit from the solid state device a first, relatively shorter wavelength radiation, and a down-converting luminophoric medium arranged in receiving relationship to said first, relatively shorter wavelength radiation, and which in exposure to said first, relatively shorter wavelength radiation, is excited to responsively emit second, relatively longer wavelength radiation. In a specific embodiment, monochromatic blue or UV light output from a light-emitting diode is down-converted to white light by packaging the diode with fluorescent organic and/or inorganic fluorescers and phosphors in a polymeric matrix.
    Type: Grant
    Filed: March 26, 1996
    Date of Patent: July 29, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Bruce Baretz, Michael A. Tischler
  • Patent number: 6599447
    Abstract: A Zr-doped (Ba,Sr)TiO3 perovskite crystal material dielectric thin film. Such dielectric thin film is characterized by at least one of the characteristics including: (a) a breakdown strength of at least 1.3 MV/cm; (b) a leakage current of not more than 1×10−3 A/cm2 under applied voltage of about ±3V or above and at temperature of about 100° C. or above; and (c) an energy storage density of at least 15 J/cc. The dielectric thin film comprises zirconium dopant in the amount of 0.5% to 50% by total weight of the Zr-doped (Ba,Sr)TiO3 perovskite crystal material, preferably 2-15%, more preferably 4% to 14%, and most preferably 5% to 12%. Such dielectric thin film in a preferred aspect is deposited by a MOCVD process using metal precursors Ba(thd)2-polyamine, Sr(thd)2-polyamine, Zr(thd)4, and Ti(OiPr)2(thd)2 at a deposition temperature in the range from about 560° C. to 700° C.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: July 29, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Gregory T. Stauf, Philip S. Chen, Jeffrey F. Roeder
  • Patent number: 6596054
    Abstract: A method and system for retrofitting an integrated scrubber to provide maximum oxygen content in a controlled decomposition oxidation (CDO) abatement process. The system includes a thermal/wet integrated scrubber, and a compressed air supply for supplying air to an oxygen separation device that separates the air into a nitrogen-enriched component and an oxygen-enriched component. The oxygen separation device utilizes a ceramic, metallic, carbonaceous or polymeric material to separate from the supplied air an oxygen-enriched component for introduction into the integrated scrubber. The integrated scrubber is equipped with a mechanical scraping device for continuous or intermittent removal of combustion deposits formed during the controlled decomposition oxidation process.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: July 22, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Belynda G. Flippo, Robbert Vermuellen, Daniel O. Clark
  • Patent number: 6592737
    Abstract: An apparatus and method for the indirect determination of concentrations of additives in metal plating electrolyte solutions, particularly organic additives in Cu-metalization baths for semiconductor manufacturing. Plating potentials between the reference and test electrodes are measured and plotted for each of the solution mixtures, and data are extrapolated to determine the concentration of the additive in the sample. A multi-cycle method determines the concentration of both accelerator and suppressor organic additives in Cu plating solution in a single test suite.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: July 15, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventor: Peter M. Robertson
  • Patent number: 6589329
    Abstract: Compositions useful for chemical vapor delivery (CVD) formation of copper layers in semiconductor integrated circuits, e.g., interconnect metallization in semiconductor device structures, as an adhesive seed layer for plating, for the deposition of a thin-film recording head or for circuitization of packaging components. The copper precursor formulation may include one or more copper precursors, e.g., a precursor of the formula hfac(Cu)L where L is a low-cost ligand such as an alkene and/or alkyne such as [(hfac)Cu]2 (DMDVS). The formulation may include in addition to the copper precursor(s) one or more low-cost ligand species such as alkenes, alkynes, dienes and combinations thereof, to increase thermal stability of the formulation and provide enhanced vaporization properties for CVD.
    Type: Grant
    Filed: March 9, 2000
    Date of Patent: July 8, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Thomas H. Baum, Chongying Xu
  • Patent number: 6581623
    Abstract: An auto-switching sub-atmospheric pressure gas delivery system, for dispensing gas to a gas-consuming process unit, e.g., a semiconductor manufacturing tool, without the occurrence of pressure spikes or flow perturbations.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: June 24, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Kent Carpenter, James Dietz
  • Patent number: 6576573
    Abstract: The present invention relates to a method and system for non-thermal abatement of effluent species generated in a semiconductor processing unit. In the method, an effluent stream is introduced into a discharge reactor wherein the components of the effluent stream are subjected to a corona discharge and maintained therein for a sufficient time to detoxify and/or dissociate the harmful components of the effluent stream. The discharge reactor, maintained at approximately atmospheric pressure, is positioned after the low-pressure semiconductor processing chamber and connecting vacuum pump system to limit interference with the semiconductor plasma processing tool.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: June 10, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventor: Jose I. Arno
  • Patent number: 6566315
    Abstract: A semiconductor wafer cleaning formulation, including 2-98% wt. organic amine, 0-50% wt. water, 0.1-60% wt. 1,3-dicarbonyl compound chelating agent, 0-25% wt. of additional different chelating agent(s), 0.1-40% wt. nitrogen-containing carboxylic acid or an imine, and 2-98% wt polar organic solvent. The formulations are useful to remove residue from wafers following a resist plasma ashing step, such as inorganic residue from semiconductor wafers containing delicate copper interconnecting structures.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: May 20, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: William A. Wojtczak, Ma. Fatima Seijo, Dave Bernhard, Long Nguyen
  • Patent number: 6559328
    Abstract: An indium precursor composition having utility for incorporation of indium in a microelectronic device structure, e.g., as an indium-containing film on a device substrate by bubbler or liquid delivery MOCVD techniques, or as a dopant species incorporated in a device substrate by ion implantation techniques. The precursor composition includes a precursor of the formula R1R2InL wherein: R1 and R2 may be same or different and are independently selected from C6-C10 aryl, C6-C10 fluoroaryl, C6-C10 perfluoroaryl, C1-C6 alkyl, C1-C6 fluoroalkyl, or C1-C6 perfluoroalkyl; and L is &bgr;-diketonato or carboxylate. Indium-containing metal films may be formed on a substrate, such as indium-copper metallization, and shallow junction indium ion-implanted structures may be formed in integrated circuitry, using the precursors of the invention.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: May 6, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Thomas H. Baum, Chongying Xu
  • Patent number: 6557593
    Abstract: A highly reliable bulk chemical delivery system for high purity chemicals employing a manifold that ensures contamination free operation and canister change outs with a minimum of valves and tubing.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: May 6, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Stephen H. Siegele, Craig M. Noah, John N. Gregg
  • Patent number: 6544482
    Abstract: The present invention provides a reaction chamber cleaning apparatus comprising a chamber, a blade apparatus comprising at least one annular mounting member, at least four scraping blades attached peripherally about the annular mounting member, and a reciprocal movement unit for rotating said scraping blade(s) circumferentially back and forth along the interior surface of said chamber to scrape the interior surface of said chamber; said reaction chamber cleaning apparatus also comprising a vortex unit comprising a generally conical outer shell attached to and extending downwardly from the top plate top plate, and a liquid inlet arranged in relation to the outer shell to tangentially introduce liquid into the outer shell, thereby forming a laminar sheet of fluid on the inner surface of the outer shell; said vortex unit further comprising a baffle and a concentric chamber bounded by the outer surface of the baffle, the inner surface of the outer shell, and the bottom surface of the top plate.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: April 8, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventor: David M. Inori
  • Patent number: 6545419
    Abstract: An improved double chamber ion source comprising a plasma generating chamber, a charge exchange chamber and a divider structure therebetween. The charge exchange chamber includes magnetic shielding material to reduce exposure of interior components to magnetic field lines externally generated. The double compartment ion source further comprises inclusion of a heat shield and/or a cooling system to overcome deleterious effects caused by increased temperature in the plasma generating chamber. The divider structure has a plurality of apertures having a configuration to reduce surface area on the divider structure in the charge exchange chamber.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: April 8, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventor: Michael C. Vella
  • Patent number: 6533874
    Abstract: A method of forming a (gallium, aluminum, indium) nitride base layer on a substrate for subsequent fabrication, e.g., by MOCVD or MBE, of a microelectronic device structure thereon. Vapor-phase (Ga, Al, In) chloride is reacted with a vapor-phase nitrogenous compound in the presence of the substrate, to form (Ga, Al, In) nitride. The (Ga, Al, In) nitride base layer is grown on the substrate by HVPE, to yield a microelectronic device base comprising a substrate with the (Ga, Al, In) nitride base layer thereon. The product of such HVPE process comprises a device quality, single crystal crack-free base layer of (Ga, Al, In) N on the substrate, in which the thickness of the base layer may, for example, be on the order of 2 microns and greater and the defect density of the base layer may, for example, be on the order of 1E8 cm−2 or lower. Microelectronic devices thereby may be formed on the base layer, over a substrate of a foreign (poor lattice match) material, such as sapphire.
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: March 18, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Robert P. Vaudo, Joan M. Redwing, Michael A. Tischler, Duncan W. Brown, Jeffrey S. Flynn
  • Patent number: 6527819
    Abstract: A chemical mechanical polishing slurry and method for using the slurry for polishing copper, barrier material and dielectric material that comprises a first and second slurry. The first slurry has a high removal rate on copper and a low removal rate on barrier material. The second slurry has a high removal rate on barrier material and a low removal rate on copper and dielectric material. The first and second slurries at least comprise silica particles, an oxidizing agent, a corrosion inhibitor, and a cleaning agent.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: March 4, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: William A. Wojtczak, Thomas H. Baum, Long Nguyen, Cary Regulski
  • Patent number: 6520218
    Abstract: In a first respect this invention is a container, comprising: a cylindrical, hollow body capped on both ends by a base and a top; a conduit that bisects the top and extends into the interior of the container; and a perforated housing that encompasses the portion of the conduit that extends into the interior of the container. In another broad respect, this invention is a removable splash guard, comprising: a housing having a top and bottom that define an internal space; a lower tube that bisects the bottom, wherein the lower tube has a upper portion which is angled; an upper tube that bisects the top, wherein a portion of the second tube that extends into the internal space contains at least one hole; and a partition interposed between the upper and lower tubes that serves to block movement of a chemical from the lower tube to the opening at the inboard end of the upper tube.
    Type: Grant
    Filed: September 3, 1998
    Date of Patent: February 18, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: John N. Gregg, Gregory W. Harris, Frank L. Cook, Robert M. Jackson
  • Patent number: 6514835
    Abstract: A method of improving the physical and/or electrical and/or magnetic properties of a thin film material formed on a substrate, wherein the properties of the thin film material are stress-dependent, by selectively applying force to the substrate during the film formation and/or thereafter during the cooling of the film in the case of a film formed at elevated temperature, to impose through the substrate an applied force condition opposing or enhancing the retention of stress in the product film. The method of the invention has particular utility in the formation of ferroelectric thin films which are grown at temperature above the Curie temperature, and which may be placed in tension during the cooling of the film to provide ferroelectric domains with polarization in the plane of the film.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: February 4, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Bryan C. Hendrix, Jeffrey F. Roeder, Steven M. Bilodeau
  • Patent number: 6511706
    Abstract: A precursor composition useful for liquid delivery MOCVD, including SBT precursors dissolved in a solvent system containing tetrahydrofuran. The associated liquid delivery MOCVD process may be carried out with vaporization of the precursor composition on a porous vaporization element having an average pore diameter in the range of from about 50 to about 200 micrometers, with the resultant precursor vapor being admixed with a carrier gas to achieve high efficiency formation of SBT films.
    Type: Grant
    Filed: November 16, 1999
    Date of Patent: January 28, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Bryan C. Hendrix, Thomas H. Baum, Debra A. Desrochers-Christos, Jeffrey F. Roeder, Witold Paw
  • Patent number: 6511856
    Abstract: A ferroelectric capacitor device structure, including a ferroelectric stack capacitor comprising a ferroelectric material capacitor element on a substrate containing buried transistor circuitry beneath an insulator layer having a via therein containing a conductive plug to the transistor circuitry, wherein E-fields are structurally confined to the ferroelectric capacitor material element.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: January 28, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Peter C. Van Buskirk, Steven M. Bilodeau