Patents Represented by Attorney Mark G. Mortenson
  • Patent number: 5061660
    Abstract: Ceramic foams in which the open cells are connected by a three-dimensional, substantially continuous ceramic matrix formed of interconnected hollow ligaments, are made from an open-cell, reticulated precursor metal, i.e., a metal foam. The precursor metal first is treated so as to allow a support coating to form thereon, and thereafter the coated precursor is heated above the melting point of the metal in the presence of an oxidant to form an oxidation reaction product.
    Type: Grant
    Filed: March 15, 1990
    Date of Patent: October 29, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Eugene S. Park, Steven D. Poste
  • Patent number: 5053367
    Abstract: A self-supporting ceramic composite body produced by a method body which comprises preparing a polycrystalline material as the oxidation reaction product of a parent metal with a vapor-phase oxidant, comminuting the resulting material to a particulate, forming a permeable mass of said particulate as filler, and infiltrating said particulate with an oxidation reaction product of a parent metal with a vapor-phase oxidant, thereby forming said ceramic composite body.
    Type: Grant
    Filed: June 22, 1990
    Date of Patent: October 1, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Danny R. White, Ratnesh K. Dwivedi
  • Patent number: 5051382
    Abstract: A method of producing a self-supporting ceramic composite body having therein at least one cavity which inversely replicates the geometry of a positive mold of parent metal. The method includes embedding the mold of parent metal within a conformable bed of filler to provide therein a cavity shaped and filled by the mold. The assembly is heated to melt the parent metal mold, e.g., an aluminum parent metal mold, and contacted with an oxidant to oxidize the molten parent metal to form a polycrystalline material which grows through the surrounding bed of filler, the molten metal being drawn through the growing polycrystalline material to be oxidized at the interface between the oxidant and previously formed oxidation reaction product whereby the cavity formerly filled by the mold of parent metal is eventually evacuated of the metal. There remains behind a cavity whose shape inversely replicates the original shape of the mold.
    Type: Grant
    Filed: March 28, 1989
    Date of Patent: September 24, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Andrew W. Urquhart, H. Daniel Lesher
  • Patent number: 5051383
    Abstract: In a method for producing ceramic body by oxidation of a parent metal having a graded microstructure characterized by a plurality of zones differing from each other in one or more properties by altering the process conditions during formation of said ceramic body such that a zone of the oxidation reaction product formed posterior to said altering has one or more properties different from a zone of the oxidation reaction product formed anterior to said altering.
    Type: Grant
    Filed: March 22, 1989
    Date of Patent: September 24, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Christopher R. Kennedy, Andrew W. Urquhart, Danny R. White, Marc S. Newkirk, Jeffrey R. Ramberg
  • Patent number: 5047269
    Abstract: An assembly for the preparation of ceramic composite structures includes a segmented container within which a permeable filler is retained and a parent metal body is contacted with the bed of permeable filler. The segmented container is comprised of one or more segments made of a material, such as an inconnel alloy, which has a coefficient of thermal expansion which is significantly greater than that of the filler. The segments are arranged to defined between or among them one or more expansion joints which are effective to accommodate circumferential thermal expansion of the segments to thereby inhibit or prevent volumetric expansion of the container. A method of forming ceramic composite structures includes heating the resulting assembly in the presence of an oxidant to melt and oxidize the parent metal, e.g., aluminum, to form a polycrystalline material comprising an oxidation reaction product which grows through the mass of filler to embed it and thus form the composite structure.
    Type: Grant
    Filed: January 18, 1989
    Date of Patent: September 10, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, H. Daniel Lesher
  • Patent number: 5040588
    Abstract: The present invention relates to the formation of a macrocomposite body by spontaneously infiltrating a permeable mass of filler material or a preform with molten matrix metal and bonding the spontaneously infiltrated material to at least one second material such as a ceramic or ceramic containing body and/or a metal or metal containing body. Particularly, an infiltration enhancer and/or infiltration enhancer precursor and/or infiltrating atmosphere are in communication with a filler material or a preform, at least at some point during the process, which permits molten matrix metal to spontaneously infiltrate the filler material or preform. Moreover, prior to infiltration, the filler material or preform is placed into contact with at least a portion of a second material such that after infiltration of the filler material or preform, the infiltrated material is bonded to the second material, thereby forming a macrocomposite body.
    Type: Grant
    Filed: November 10, 1988
    Date of Patent: August 20, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Danny R. White, Christopher R. Kennedy, Alan S. Nagelberg, Michael K. Aghajanian, Robert J. Wiener
  • Patent number: 5024794
    Abstract: A method of producing a self-supporting ceramic or ceramic composite structures which includes providing a first self-supporting ceramic or ceramic composite body comprising (i) a polycrystalline oxidation reaction product formed upon oxidation of a first molten parent metal with a first oxidant, and (ii) interconnected porosity at least partially accessible from one or more surfaces of said first ceramic body. A second ceramic body is used to form, by reaction with an oxidant, a second polycrystalline material which is infiltrated into the porosity of at least a portion of said first ceramic body.
    Type: Grant
    Filed: March 15, 1988
    Date of Patent: June 18, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Jerry G. Weinstein
  • Patent number: 5024795
    Abstract: The present invention provides a method for producing a self-supporting ceramic composite by the oxidation of a parent metal to form a polycrystalline ceramic material consisting essentially of the oxidation reaction product of the parent metal with an oxidant, including a vapor-phase oxidant, and, optionally, one or more metallic constituents. A permeable filler material, such as a preform, with at least one surface bearing a permeable stratum, is contacted with a body of molten parent metal heated to a temperature above its melting point but below the melting point of the oxidation reaction product.
    Type: Grant
    Filed: December 6, 1988
    Date of Patent: June 18, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Christopher R. Kennedy, Marc S. Newkirk
  • Patent number: 5020583
    Abstract: A metal matrix composite is formed by contacting a molten matrix alloy with a permeable mass of filler material or preform in the presence of an infiltrating atmosphere. Under these conditions, the molten matrix alloy will spontaneously infiltrate the permeable mass of filler material or preform under normal atmospheric pressures. Once a desired amount of spontaneous infiltration has been achieved, or during the spontaneous infiltration step, the matrix metal which has infiltrated the permeable mass of filler material or preform is directionally solidified. This technique allows the production of spontaneously infiltrated metal matrix composites having improved microstructures and properties.
    Type: Grant
    Filed: November 10, 1988
    Date of Patent: June 4, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Michael K. Aghajanian, Robert C. Kantner, John P. Biel, Jr.
  • Patent number: 5020584
    Abstract: The present invention relates to a novel method for forming metal matrix composite bodies and novel products produced by the method. Particularly, a permeable mass of filler material or a preform has included therein at least some matrix metal powder. Moreover, an infiltration enhancer and/or an infiltration enhancer precursor and/or an infiltrating atmosphere are in communication with the filler material or a preform, at least at some point during the process, which permits molten matrix metal to spontaneously infiltrate the filler material or preform. The presence of powdered matrix metal in the preform or filler material reduces the relative volume fraction of filler material to matrix metal.
    Type: Grant
    Filed: November 10, 1988
    Date of Patent: June 4, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Michael K. Aghajanian, Alan S. Nagelberg, Christopher R. Kennedy
  • Patent number: 5019539
    Abstract: This invention relates generally to a novel method of preparing self-supporting bodies and to the novel products made thereby. In its more specific aspects, this invention relates to a method of producing self-supporting bodies comprising one or more boron-containing compounds, e.g., a boride or a boride and a carbide, by reacting, in one embodiment, a powdered parent metal, in molten form, with a bed or mass comprising a boron carbide material and, optionally, one or more inert fillers, to form the body. In another embodiment, both of a powdered parent metal and a body or pool of molten parent metal are induced to react with a bed or mass comprising a boron carbide material, and, optionally, one or more inert fillers.
    Type: Grant
    Filed: January 13, 1989
    Date of Patent: May 28, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Terry D. Claar, William B. Johnson
  • Patent number: 5019541
    Abstract: This invention relates to a method for producing a self-supporting ceramic structure comprising an oxidation reaction product of a parent metal and a vapor-phase oxidant characterized by an altered microstructure attributable to the addition of one or more process modifiers relative to substantially the same oxidation reaction product produced without a process modifier.
    Type: Grant
    Filed: July 2, 1990
    Date of Patent: May 28, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Robert C. Kantner, Michael K. Aghajanian, Stanislav Antolin, Alan S. Nagelberg, Ratnesh K. Dwivedi
  • Patent number: 5017334
    Abstract: Self-supporting bodies are produced by reactive infiltration of a parent metal into a boron carbide material which may contain one or both of a boron donor material and a carbon donor material. The reactive infiltration typically results in a composite comprising a boron-containing compound, a carbon-containing compound and residual metal, if desired. The mass to be infiltrated may contain one or more inert fillers admixed with the boron carbide material, boron-containing compound and/or carbon-containing compound. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal, ratios of one ceramic to another and porosity.
    Type: Grant
    Filed: December 5, 1989
    Date of Patent: May 21, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Terry D. Claar, Steven M. Mason, Kevin P. Pochopien, Danny R. White, William B. Johnson
  • Patent number: 5017526
    Abstract: A method of producing self-supporting ceramic composite bodies of desired shape by infiltrating a permeable self supporting preform with polycrystalline matrix material comprising an oxidation reaction product obtained by oxidation of a parent metal precursor, such as aluminum, and optionally containing therein metallic constituents. The composite body is formed by contacting a zone of a permeable self supporting preform, having at least one defined surface boundary spaced from said contacting zone, with a body of molten metal which is reacted with a suitable vapor-phase oxidant to form an oxidation reaction product.
    Type: Grant
    Filed: April 14, 1989
    Date of Patent: May 21, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Shirley L. Zwicker
  • Patent number: 5017533
    Abstract: There is disclosed a method for producing a self-supporting ceramic body by oxidation of a molten precursor metal with a vapor-phase oxidant to form an oxidation reaction product and inducing a molten flux comprising said molten precursor metal through said oxidation reaction product. A second metal is incorporated into said molten flux during the oxidation reaction. The resulting ceramic body includes sufficient second metal such that one or more properties of said ceramic body are at least partially affected by the presence and properties of said second metal.
    Type: Grant
    Filed: August 2, 1989
    Date of Patent: May 21, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Christopher R. Kennedy, Robert C. Kantner
  • Patent number: 5016703
    Abstract: The present invention relates to the formation of a metal matrix composite body by a spontaneous infiltration technique. Particularly, an infiltration enhancer and/or infiltration enhancer precursor can be positioned at least partially between or at an interface between a matrix metal and a filler material (or preform) which is to be infiltrated by molten matrix metal. Moreover, at least at some point during the process, an infiltrating atmosphere may be in communication with the filler material or preform and/or matrix metal.
    Type: Grant
    Filed: November 10, 1988
    Date of Patent: May 21, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Michael K. Aghajanian, Alan S. Nagelberg
  • Patent number: 5015610
    Abstract: There is disclosed a method for making a self-supporting ceramic composite article having a porous core bearing a dense surface layer formed integrally with said core. A preform comprises a filler material and parent metal distributed therethrough, wherein the volume percent of parent metal is sufficient to form a volume of oxidation reaction product exceeding the total volume available within said preform. The parent metal is molted and reacted with an oxidant to form an oxidation reaction product filling the spatial volume and leaving voids. The reaction is continued to further transport molten parent metal through the oxidation reaction product to at least one surface of the preform to form oxidation reaction product on said surface substantially free of voids thereby forming a relatively dense surface layer.
    Type: Grant
    Filed: September 28, 1989
    Date of Patent: May 14, 1991
    Assignee: Lanxide Technology Company, LP
    Inventor: Ratnesh K. Dwivedi
  • Patent number: 5015609
    Abstract: A method is provided of producing a self-supporting ceramic composite structure having one or more encasement members, such as an encasing steel sleeve, joined to it by growth of the ceramic material to engagement surface(s) of the encasement member(s). A parent metal is contacted with a body of filler which is encased by the encasement member(s). The resulting assembly is heated to melt and oxidize the parent metal, e.g., aluminum, to form a polycrystalline material comprising an oxidation reaction product which grows through the body of filler and stops at the engagement surface(s) of the encasement member(s) which thereby determines the surface geometry of the grown ceramic matrix. Upon cooling, the encasement member(s) is shrink-fitted about the ceramic composite body. The invention also provides the resultant articles, for example, a ceramic composite body having a stainless steel member affixed thereto.
    Type: Grant
    Filed: March 30, 1989
    Date of Patent: May 14, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, H. Daniel Lesher
  • Patent number: 5011063
    Abstract: This invention relates generally to a novel method of manufacturing a composite body and to novel products made thereby. More particularly, the invention relates to a method of producing a self-supporting body comprising one or more boron-containing compounds, e.g., a boride or a boride and carbide, by reactive infiltration of molten parent metal into a bed or mass containing boron carbide, and, optionally, one or more inert fillers and permitting residual or excess parent metal, to remain bonded to the formed self-supporting body. Excess metal is used to form a bond between the reactively infiltrated body and another body (e.g., a metal or a ceramic body).
    Type: Grant
    Filed: July 23, 1990
    Date of Patent: April 30, 1991
    Assignee: Lanxide Technology Company, LP
    Inventor: Terry D. Claar
  • Patent number: 5010945
    Abstract: The present invention relates to a novel method for forming metal matrix composite bodies and the novel products produced therefrom. A negative shape or cavity, which is complementary to the desired metal matrix composite body to be produced, is first formed. The formed cavity is thereafter filled with a permeable mass of filler material. Molten matrix metal is then induced to spontaneously infiltrate the filled cavity. Particularly, an infiltration enhancer and/or an infiltration enhancer precursor and/or an infiltrating atmosphere are also in communication with the filler material, at least at some point during the process, which permits the matrix metal, when made molten, to spontaneously infiltrate the permeable mass of filler material, which at some point during the processing, may become self-supporting. In a preferred embodiment, cavities can be produced by a process which is similar to the so-called lost-wax process.
    Type: Grant
    Filed: November 10, 1988
    Date of Patent: April 30, 1991
    Assignee: Lanxide Technology Company, LP
    Inventor: John T. Burke