Abstract: A material dispensing device delivers material directly into the ground. According to one embodiment of the material dispensing device, the device comprises an elongated hollow shaft, a receptacle, a helical flange and on or more openings formed in the shaft or helical flanges. The receptacle is disposed adjacent one end of the shaft for holding material. The receptacle is communicatively open to the shaft such that the material or a liquid-material mixture dissolved from at least a portion of the material can flow from the receptacle into the shaft. The helical flange is secured to the shaft. The shaft and helical flange are configured such that rotation of the shaft and flange causes the material dispensing device to be driven into the ground. The one or more openings formed in the shaft or helical flange disperse the material or the liquid-material mixture into the ground.
Abstract: The present invention provides a dense semiconductor fuse array having common cathodes. The dense semiconductor fuse array of the present invention occupies less area than conventional semiconductor fuse arrays, can comprise integrated diodic components, and can require only one metal wiring layer for making electrical connections to the fuse array.
Type:
Grant
Filed:
March 3, 2005
Date of Patent:
June 5, 2007
Assignee:
International Business Machines Corporation
Inventors:
Byeongju Park, Chandrasekharan Kothandaraman, Subramanian S. Iyer
Abstract: Methods for preparing a silicon oxynitride layer where the silicon oxynitride layer is deposited atop a substrate and have a low concentration of nitrogen at the interface of the silicon oxynitride layer and the substrate. The silicon oxynitride layer is formed by pulsing at least one interface precursor onto a substrate, where said substrate chemisorbs a portion of said at least one interface precursor to form a monolayer of said at least one interface precursor; and pulsing a nitrogen-containing precursor onto said substrate containing said monolayer of interface precursor, where said monolayer of said at least one interface precursor chemisorbs a portion of said nitrogen-containing precursor to form a monolayer of said nitrogen-containing precursor. The interface precursor includes oxygen-containing or silicon-containing precursor gasses.
Type:
Grant
Filed:
June 18, 2003
Date of Patent:
August 16, 2005
Assignee:
International Business Machines Corporation
Inventors:
Anthony I. Chou, Michael P. Chudzik, Toshiharu Furukawa, Oleg Gluschenkov, Paul D. Kirsch, Kristen C. Scheer, Joseph Shepard, Jr.
Abstract: A structure and method for a metal replacement gate of a high performance device is provided. A sacrificial gate structure is first formed on an etch stop layer provided on a semiconductor substrate. A pair of spacers is provided on sidewalls of the sacrificial gate structure. The sacrificial gate structure is then removed, forming an opening. Subsequently, a metal gate including an first layer of metal such as tungsten, a diffusion barrier such as titanium nitride, and a second layer of metal such as tungsten is formed in the opening between the spacers.
Type:
Grant
Filed:
September 9, 2003
Date of Patent:
July 26, 2005
Assignee:
International Business Machines Corporation
Inventors:
Cyril Cabral, Jr., Paul C. Jamison, Victor Ku, Ying Li, Vijay Narayanan, An L Steegen, Yun-Yu Wang, Kwong H. Wong