Patents Represented by Attorney, Agent or Law Firm Maryann Maas
  • Patent number: 8329028
    Abstract: Systems and processes for hydrocarbon conversion are provided that utilize a plurality of moving bed reactors. The reactors may be moving bed radial flow reactors. Optional mixers that mix a portion of a second hydrocarbon feed with the effluent stream from an upstream reactor, to produce reactor feed streams may be employed, and the reactor feed streams may be introduced at injection points prior to each reactor. Catalyst can be provided from the reaction zone of one reactor to the reaction zone of a downstream reactor through catalyst transfer pipes, and can be regenerated after passing through the reaction zones of the reactors. The moving bed reactors can be stacked in one or more reactor stacks.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: December 11, 2012
    Assignee: UOP LLC
    Inventors: Clayton C. Sadler, Mary Jo Wier, Laurence O. Stine, Christopher Naunheimer
  • Patent number: 8329967
    Abstract: A process for producing a blended fuel from a paraffin rich component and a cyclic rich component, where each of the components are generated from a renewable feedstock, is presented. The paraffin rich component is generated from glycerides and free fatty acids in feedstocks such as plant and animal oils. The cyclic rich component is generated from biomass derived pyrolysis oil. The source of the animal or plant oil and the biomass may be the same renewable source.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: December 11, 2012
    Assignee: UOP LLC
    Inventors: Timothy A. Brandvold, Michael J. McCall
  • Patent number: 8329968
    Abstract: A process for producing at least one blended fuel from a paraffin rich component and a cyclic rich component, where each of the components are generated from a renewable feedstock, is presented. The paraffin rich component is generated from glycerides and free fatty acids in feedstocks such as plant and animal oils. The cyclic rich component is generated from biomass derived pyrolysis oil. The source of the animal or plant oil and the biomass may be the same renewable source.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: December 11, 2012
    Assignee: UOP LLC
    Inventors: Timothy A. Brandvold, Michael J. McCall
  • Patent number: 8329969
    Abstract: A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: December 11, 2012
    Assignee: UOP LLC
    Inventors: Michael J. McCall, Timothy A. Brandvold, Douglas C. Elliott
  • Patent number: 8323476
    Abstract: Systems and processes for the hydroprocessing of a hydrocarbonaceous feed are provided that utilize a plurality of moving bed reactors. The reactors may be moving bed radial flow reactors. A hydrogen injection point can be provided prior to each reactor by providing a mixer that mixes hydrogen with a hydrocarbonaceous feed, or with the effluent stream from an upstream reactor, to produce a reactor feed stream. Catalyst can be provided from the reaction zone of one reactor to the reaction zone of a downstream reactor through catalyst transfer pipes, and can be regenerated after passing through the reaction zones of the reactors. The moving bed reactors can be stacked in one or more reactor stacks.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: December 4, 2012
    Assignee: UOP LLC
    Inventors: Clayton C. Sadler, Mary Jo Wier, Laurence O. Stine, Christopher Naunheimer
  • Patent number: 8324323
    Abstract: The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: December 4, 2012
    Assignees: UOP LLC, The Regents of the University of Michigan
    Inventors: Kyoung Moo Koh, Antek G. Wong-Foy, Adam J. Matzger, Annabelle I. Benin, Richard R. Willis
  • Patent number: 8326789
    Abstract: The invention relates to a method of troubleshooting process issues using an Expert System. More specifically, the invention involves transmitting, to an Expert System, Remote Performance Management (RPM) data based on Distributed Control System (DCS) information and subsequently translating the RPM data. The Expert System determines a solution along with an associated confidence level. The Expert System may prioritize the solution and simultaneously signal the DCS to automatically implement the transmitted solution.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: December 4, 2012
    Assignee: UOP LLC
    Inventors: Karl Johnson, Christophe Romatier, Kirk McNamara
  • Patent number: 8324438
    Abstract: A process for producing at least one blended fuel from a paraffin rich component and a cyclic rich component, where each of the components are generated from a renewable feedstock, is presented. The paraffin rich component is generated from glycerides and free fatty acids in feedstocks such as plant and animal oils. The cyclic rich component is generated from biomass derived pyrolysis oil. The source of the animal or plant oil and the biomass may be the same renewable source.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: December 4, 2012
    Assignee: UOP LLC
    Inventors: Timothy A. Brandvold, Michael J. McCall
  • Patent number: 8323937
    Abstract: A catalytic process for generating at least one polyol from a feedstock comprising cellulose is performed in a continuous manner using a catalyst comprising nickel tungsten carbide. The process involves, contacting, continuously, hydrogen, water, and a feedstock comprising cellulose, with the catalyst to generate an effluent stream comprising at least one polyol and recovering the polyol from the effluent stream.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: December 4, 2012
    Assignees: UOP LLC, Dalian Institute of Chemical Physics
    Inventors: Tao Zhang, Aiqin Wang, Mingyuan Zheng, Changzhi Li, Jifeng Pang, Tom N. Kalnes, John Q. Chen, Joseph A. Kocal
  • Patent number: 8313563
    Abstract: One exemplary embodiment can be an apparatus for isomerizing a hydrocarbon stream rich in a C4 hydrocarbon and/or at least one of a C5 and C6 hydrocarbon. The apparatus can include: a vessel containing a fluid including at least one reactant; a fluid transfer device receiving the fluid including at least one reactant from the vessel; at least one drier receiving the fluid including at least one reactant from the fluid transfer device; and a reactor communicating with the at least one drier to receive the fluid including at least one reactant. In addition, the at least one drier may communicate with the vessel at least by sending the fluid including at least one reactant or the regenerant through a fluid tapering device for at least one of regulating the flow and reducing the pressure of the regenerant to the vessel.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: November 20, 2012
    Assignee: UOP LLC
    Inventors: David J. Shecterle, Bryan S. Garney, James M. Shawley, Jocelyn Daguio
  • Patent number: 8314274
    Abstract: A process for improving cold flow properties of diesel range hydrocarbons produced from renewable feedstocks such as plant oils and animal oils. A renewable feedstock is treated by hydrogenating and deoxygenating to provide an effluent comprising paraffins followed by isomerizing and selectively hydrocracking at least a portion of the paraffins to generate a diesel range hydrocarbon product. A portion of the diesel range hydrocarbon product is selectively separated and recycled to the isomerization and selective hydrocracking zone.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: November 20, 2012
    Assignee: UOP LLC
    Inventors: Terry L. Marker, Charles P. Luebke
  • Patent number: 8313562
    Abstract: One exemplary embodiment can be an apparatus for isomerizing a hydrocarbon stream rich in a C4 hydrocarbon and/or at least one of a C5 and C6 hydrocarbon. The apparatus can include: a first drier and a second drier adapted to receive a fluid including at least one reactant; and a reaction zone communicating with the first drier to receive the fluid including at least one reactant and with the second drier to receive the regenerant. Generally, the first drier operates at a first condition to dry the fluid including at least one reactant and the second drier operates at a second condition during regeneration with a regenerant. The regenerant can pass through a fluid tapering device for regulating the flow of the regenerant to the reaction zone.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: November 20, 2012
    Assignee: UOP LLC
    Inventors: David J. Shecterle, Bryan S. Garney, Jocelyn C. Daguio, James M. Shawley
  • Patent number: 8309661
    Abstract: The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: November 13, 2012
    Assignees: UOP LLC, The Regents of the University of Michigan
    Inventors: Kyoung Moo Koh, Antek G. Wong-Foy, Adam J. Matzger, Annabelle I. Benin, Richard R. Willis
  • Patent number: 8304592
    Abstract: A process has been developed for producing fuel from renewable feedstocks such as plant and animal oils and greases. The process involves treating a first portion of a renewable feedstock by hydrogenating and deoxygenating in a first reaction zone and a second portion of a renewable feedstock by hydrogenating and deoxygenating in a second reaction zone to provide a diesel boiling point range fuel hydrocarbon product. If desired, the hydrocarbon product can be isomerized to improve cold flow properties. A portion of the hydrocarbon product is recycled to the first reaction zone to increase the hydrogen solubility of the reaction mixture.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: November 6, 2012
    Assignee: UOP LLC
    Inventor: Charles P. Luebke
  • Patent number: 8282814
    Abstract: One exemplary embodiment of the present invention can be a fired heater for a hydrocarbon conversion process. The fired heater includes inlet and outlet headers or manifolds, a set of heater tubes with each heater tube having an inlet and an outlet, at least one restriction orifice adjacent the inlet of at least one heater tube. The restriction orifice may be within the inlet manifold and adjacent the inlet of a heater tube, or between the inlet manifold and the inlet to the heater tube. A process may include passing a hydrocarbon stream through the fired heater described herein during the course of operating a hydrocarbon conversion process.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: October 9, 2012
    Assignee: UOP LLC
    Inventor: Kenneth D. Peters
  • Patent number: 8283506
    Abstract: A process has been developed for producing fuel from renewable feedstocks such as plant and animal oils and greases. The process involves treating a first portion of a renewable feedstock by hydrogenating and deoxygenating in a first reaction zone and a second portion of a renewable feedstock by hydrogenating and deoxygenating in a second reaction zone and treating the effluents in a finishing reaction zone to provide a diesel boiling point range fuel hydrocarbon product. If desired, the hydrocarbon product can be isomerized to improve cold flow properties. A portion of the hydrocarbon product is recycled to the first reaction zone to increase the hydrogen solubility of the reaction mixture.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: October 9, 2012
    Assignee: UOP LLC
    Inventors: Peter Kokayeff, Terry L. Marker, John A. Petri
  • Patent number: 8283511
    Abstract: A simulated moving bed adsorptive separation process for preparing the separate feed streams charged to naphtha reforming unit and a steam cracking unit has been developed. The feed stream to the overall unit is passed into the adsorptive separation unit. The desorbent in the adsorptive separation is C12 hydrocarbons. The simulated moving bed adsorptive separation separates the components of the feed stream into a normal paraffin stream, which is charged to the steam cracking process, and non-normal hydrocarbons which are passed into a reforming zone. The desorbent is readily separated from the normal paraffin stream and from the non-normal paraffin stream and the simulated moving bed adsorption zone is operated at an A/Fn ratio of from about 0.90 to about 0.92.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: October 9, 2012
    Assignee: UOP LLC
    Inventors: Stephen W. Sohn, Lynn H. Rice, Santi Kulprathipanja
  • Patent number: 8271401
    Abstract: An expert system may be utilized for providing and receiving interactive, computer-implemented support services related to chemical processing units. The expert system may include a knowledge base that contains information coded in the form of rules, decision trees, and logic and a database that stores and handles various types of information related to the expert system. A query component receives a query that may be a problem, a performance issue, or a training request selected from a list or diagram or otherwise generated by a customer. An answer component utilizes the knowledge base, the database, an external database, and/or an expert to provide one or more answers to the query. A question and answer session may be initiated by the expert system in order to gain further information and detail related to the query. Supplemental information and the identified answers may be provided to the customer.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: September 18, 2012
    Assignee: UOP LLC
    Inventors: Blaise J. Arena, Veronica M. May, Alan Zagoria, Martha S. Buchan
  • Patent number: 8262901
    Abstract: An exemplary embodiment can be a process for removing one or more polynuclear aromatics from at least one reformate stream from a reforming zone. The PNAs may be removed using an adsorption zone. The adsorption zone can include first and second vessels each vessel containing an activated carbon adsorbent. Generally, the process includes passing the at least a portion of an effluent of the reforming zone through the first vessel containing a first activated carbon adsorbent wherein the first activated carbon adsorbent comprises iron.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: September 11, 2012
    Assignee: UOP LLC
    Inventors: Manuela Serban, Mark P. Lapinski, Mark D. Moser
  • Patent number: 8247631
    Abstract: Catalytic cracking processes such as fluidized catalytic cracking, naphtha cracking, and olefin cracking are catalyzed by the UZM-35 family of crystalline aluminosilicate zeolitic compositions represented by the empirical formula: Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These UZM-35 zeolitic compositions are active and selective in the catalytic cracking of hydrocarbons.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: August 21, 2012
    Assignee: UOP LLC
    Inventors: Christopher P Nicholas, Deng-Yang Jan, Jaime G. Moscoso