Patents Represented by Attorney, Agent or Law Firm Maryann Maas
  • Patent number: 7588729
    Abstract: A process vessel containing both an evaporation zone for evaporating a liquid feed and a treatment zone for treating the resulting vapor comprises an injector having an orifice, the orifice being in the evaporation zone, at least one evaporation surface for evaporating feed and generating vapor, the evaporation surface being located in the evaporation zone, wherein the injector orifice and the evaporation surface are positioned to prevent the formation of a drop at the orifice, a treatment zone for treating the vapor and at least one heater associated with at least a portion of the process vessel.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: September 15, 2009
    Assignee: UOP LLC
    Inventors: Arne Karlsson, Ivar M. Dahl, Jonny Engedahl, Mark A. Krawczyk, Ara J. Alexanian
  • Patent number: 7553998
    Abstract: This invention is drawn to a process for producing and recovering one or more high-purity xylene isomers from a feed stream having a substantial content of C9 and heavier hydrocarbons. The feed stream is processed to de-ethylate heavy aromatics, fractionated and passed to a circuit comprising C8-aromatic isomer recovery and isomerization to recover the high-purity xylene isomer with lowered energy costs.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: June 30, 2009
    Assignee: UOP LLC
    Inventors: Leo Bresler, Robert B. Larson
  • Patent number: 7547387
    Abstract: A process for contacting a bed of particulate material, usually catalyst, with a transverse flow of fluid is disclosed. The particulate material moves or is prevented from not moving, while the fluid passes through the bed at a rate greater than the stagnant bed pinning flow rate. This invention is applicable to hydrocarbon conversion processes and allows for higher fluid throughput rates compared to prior art processes.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: June 16, 2009
    Assignee: UOP LLC
    Inventors: Weikai Gu, Paul A. Sechrist
  • Patent number: 7544848
    Abstract: Processes and apparatus are provided that provide high yields of xylenes per unit of aromatic-containing feed while enabling a high purity benzene co-product to be obtained without the need for an extraction or distillation to remove C6 naphthenes. The processes of this invention include a transalkylation section and a disproportionation section in the benzene and toluene-containing feed is directly provided to the transalkylation section and in which a benzene recycle loop in the transalkylation section isolates the disproportionation section from C6 naphthenes.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: June 9, 2009
    Assignee: UOP LLC
    Inventors: Edward M. Casey, Patrick J. Silady, Antoine Negiz, Gregory R. Werba
  • Patent number: 7544849
    Abstract: A process for preparing a transalkylation catalyst, the catalyst itself, and a transalkylation process for using the catalyst are herein disclosed. The catalyst comprises rhenium metal on a solid-acid support such as mordenite, which has been treated with a sulfur-based agent. Such treatment reduces the amount of methane produced by metal hydrogenolysis in a transalkylation process wherein heavy aromatics like A9+ are reacted with toluene to produce xylenes. Reduced methane production relative to total light ends gas production results in lower hydrogen consumption and lower reactor exotherms.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: June 9, 2009
    Assignee: UOP LLC
    Inventors: Edwin P. Boldingh, Antoine Negiz, Gregory F. Maher, Paula L. Bogdan, Dean E. Rende
  • Patent number: 7538064
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a tungstated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a phosphorus component, and at least one platinum-group metal component which is preferably platinum. The catalyst has a structure other than a hetropoly anion structure.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: May 26, 2009
    Assignee: UOP LLC
    Inventors: Ralph D. Gillespie, Feng Xu
  • Patent number: 7534925
    Abstract: The benzene content in a gasoline pool is reduced by a process that hydrogenates a benzene-containing isomerization zone feedstream. The additional cyclic hydrocarbons produced by the saturation of benzene can be processed in the isomerization zone for ring opening to increase the available paraffinic feedstock or the isomerization zone can be operated to pass the cyclic hydrocarbons through to a product recovery section. The isomerization zone feedstream is treated to remove contaminants and dried before entering the hydrogenation zone.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: May 19, 2009
    Assignee: UOP LLC
    Inventor: David J. Shecterle
  • Patent number: 7533587
    Abstract: The present invention comprises an apparatus and a method for mass analyses of an array of samples contained in distinct sample holders. The sample holders are placed on a plurality of sensors which preferably comprise an array of microbalances providing output signals comprising mass data on the array of samples.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: May 19, 2009
    Assignee: UOP LLC
    Inventors: Rune Wendelbo, Duncan E. Akporiaye, Arne Karlsson, Ib-Rune Johansen, Ivar M. Dahl, Britta G. Fismen, Richard Blom, Dag T. Wang, Morten Gulliksen, Martin Plassen
  • Patent number: 7533586
    Abstract: The present invention comprises an apparatus and a method for mass analyses of an array of samples contained in distinct sample holders. The sample holders are placed on a plurality of sensors which preferably comprise an array of microbalances providing output signals comprising mass data on the array of samples.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: May 19, 2009
    Assignee: UOP LLC
    Inventors: Rune Wendelbo, Duncan E. Akporiaye, Arne Karlsson, Ib-Rune Johansen, Ivar M. Dahl, Britta G. Fismen, Richard Blom, Dag T. Wang, Morten Gulliksen, Martin Plassen
  • Patent number: 7531704
    Abstract: The benzene content in a gasoline pool is reduced by a process that hydrogenates a benzene-containing isomerization zone feedstream. The additional cyclic hydrocarbons produced by the saturation of benzene can be processed in the isomerization zone for ring opening to increase the available paraffinic feedstock or the isomerization zone can be operated to pass the cyclic hydrocarbons through to a product recovery section. The isomerization zone feedstream is treated to remove contaminants and dried before entering the hydrogenation zone.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: May 12, 2009
    Assignee: UOP LLC
    Inventor: David J. Shecterle
  • Patent number: 7525008
    Abstract: A process for isomerizing ethylbenzene into xylenes such as para-xylene using a zeolitic catalyst system based on low Si/Al2 MTW-type zeolite that preferably is substantially free of mordenite. The catalyst may be bimetallic where the two metals are platinum and tin.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: April 28, 2009
    Assignee: UOP LLC
    Inventors: Paula L. Bogdan, John E. Bauer, E. Alejandro Leon-Escamilla, Gregory F. Maher, Robert B. Larson
  • Patent number: 7525003
    Abstract: This ethylbenzene process involves contacting, in an alkylation zone, a first benzene recycle stream and an ethylene feed stream with an alkylation catalyst to form ethylbenzene. In a transalkylation zone, a polyethylbenzene recycle stream and a second benzene recycle stream are contacted with a transalkylation catalyst to form additional ethylbenzene. The effluents are passed into a dividing wall distillation column where a benzene overhead and a benzene side draw are removed and recycled. An ethylbenzene stream product stream is also removed. The remainder, largely polyethylbenzene and tar, is passed to a polyethylbenzene column for separation. The separated polyethylbenzene is recycled to the transalkylation reactor.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: April 28, 2009
    Assignee: UOP LLC
    Inventors: Michael A. Schultz, Steven P. Lankton, Constante P. Tagamolila
  • Patent number: 7525005
    Abstract: This cumene process involves contacting, in an alkylation zone, a first benzene recycle stream and a propylene feed stream with an alkylation catalyst to form cumene. In a transalkylation zone, a polyisopropylbenzene recycle stream and a second benzene recycle stream are contacted with a transalkylation catalyst to form additional cumene. The effluents are passed into a benzene distillation column. From the benzene distillation column, a first benzene recycle stream is removed as overhead; a second benzene recycle stream is removed as a side draw; and a bottoms stream comprising polyisopropylbenzene, cumene, and heavy aromatics is removed from an end. The bottoms stream is passed to a dividing wall distillation column where the polyisopropylbenzene recycle stream is removed from an intermediate point; a cumene product stream is removed from a first end, and a heavy aromatic stream is removed from a second end.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: April 28, 2009
    Assignee: UOP LLC
    Inventors: Michael A. Schultz, Steven P. Lankton, Constante P. Tagamolila
  • Patent number: 7525006
    Abstract: This cumene process involves contacting, in an alkylation zone, a first benzene recycle stream and a propylene feed stream with an alkylation catalyst to form cumene. In a transalkylation zone, a polyisopropyl benzene recycle stream and a second benzene recycle stream are contacted with a transalkylation catalyst to form additional cumene. The effluents are passed into a dividing wall distillation column. A cumene stream is removed from an intermediate point of the dividing wall fractionation column; a first benzene recycle stream is removed from a first end and a heavy aromatics stream is removed from a second end. A second benzene recycle stream is removed from an intermediate point located between the first end and the cumene stream. A polyisopropyl benzene stream is removed from an intermediate point of located between the second end and the cumene stream.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: April 28, 2009
    Assignee: UOP LLC
    Inventors: Michael A. Schultz, Steven P. Lankton, Constante P. Tagamolila
  • Patent number: 7525004
    Abstract: This ethylbenzene process involves contacting, in an alkylation zone, a first benzene recycle stream and an ethylene feed stream with an alkylation catalyst to form ethylbenzene. In a transalkylation zone, a polyethylbenzene recycle stream and a second benzene recycle stream are contacted with a transalkylation catalyst to form additional ethylbenzene. The effluents are passed into a benzene distillation column. From the benzene distillation column, a first benzene recycle stream is removed as overhead; a second benzene recycle stream is removed as a side draw; and a bottoms stream comprising polyethylbenzene, ethylbenzene, and flux oil is removed from an end. The bottoms stream is passed to a dividing wall distillation column where the polyethylbenzene recycle stream is removed from an intermediate point; an ethylbenzene product stream is removed from a first end, and a heavy oil stream is removed from a second end.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: April 28, 2009
    Assignee: UOP LLC
    Inventors: Michael A. Schultz, Steven P. Lankton, Constante P. Tagamolila
  • Patent number: 7514590
    Abstract: Isomerization of a feedstream comprising C5 to C6 hydrocarbons involving charging hydrogen and the feedstream into an isomerization zone to contact an isomerization catalyst at isomerization conditions and increase the branching of the feedstream hydrocarbons to produce an isomerization effluent stream has been discovered. Without passing through a stabilizer, the isomerization effluent is passed through a product separator and a flash drum and then to an adsorptive separation zone to generate a raffinate stream enriched in branched alkanes, an extract stream enriched in normal alkanes, and at least one light ends stream. Within the adsorptive separation zone, the raffinate and the extract streams are each passed through a fractionator remove light ends and desorbent. The desorbent is recycled to the adsorptive separation zone. The remainder of the extract stream is recycled to the isomerization zone and the remainder of the raffinate stream is collected.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: April 7, 2009
    Assignee: UOP LLC
    Inventor: Lynn H. Rice
  • Patent number: 7498471
    Abstract: In an alkylation zone, a benzene recycle stream and a propylene feed stream are contacted with an alkylation catalyst to convert the propylene and benzene into cumene. In a transalkylation zone, a polyisopropylbenzene stream and a benzene recycle stream are contacted with a transalkylation catalyst to convert the polyisopropylbenzene and benzene into cumene. The alkylation and transalkylation zone effluents are passed into a dividing wall fractionation column. A cumene product stream is removed from an intermediate point of the dividing wall fractionation column. A benzene recycle stream is removed from a first end, and another benzene recycle stream is removed from an intermediate point of the dividing wall fractionation column. A polyisopropylbenzene stream is removed from a second end of the dividing wall fractionation column. The polyisopropylbenzene stream is passed to a polyisopropylbenzene fractionation column to separate the polyisopropylbenzene from a heavy ends stream.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: March 3, 2009
    Assignee: UOP LLC
    Inventors: Michael A. Schultz, Steven P. Lankton, Constante P. Tagamolila
  • Patent number: 7498473
    Abstract: This invention relates to a process for catalytic dehydrocyclodimerization wherein the reaction mixture contains from about 10 to about 200 wt. ppm water. Providing water in the reaction mixture allows for an extended life of the zeolitic catalyst thereby increasing the efficiency of the catalytic dehydrocyclodimerization process.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: March 3, 2009
    Assignee: UOP LLC
    Inventors: Lubo Zhou, Benjamin J. Nagel
  • Patent number: 7498472
    Abstract: This ethylbenzene process involves contacting, in an alkylation zone, a first benzene recycle stream and an ethylene feed stream with an alkylation catalyst to form ethylbenzene. In a transalkylation zone, a polyethylbenzene recycle stream and a second benzene recycle stream are contacted with a transalkylation catalyst to form additional ethylbenzene. The effluents are passed into a dividing wall distillation column. An ethylbenzene stream is removed from an intermediate point of the dividing wall fractionation column; a first benzene recycle stream is removed from a first end and a flux oil stream is removed from a second end. A second benzene recycle stream is removed from an intermediate point located between the first end and the ethylbenzene stream. A polyethylbenzene stream is removed from an intermediate point of located between the second end and the ethylbenzene stream.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: March 3, 2009
    Assignee: UOP LLC
    Inventors: Michael A. Schultz, Steven P. Lankton, Constante P. Tagamolila
  • Patent number: 7495137
    Abstract: This invention is drawn to a process for isomerizing a non-equilibrium mixture of alkylaromatics in two sequential zones, the first zone operating in the absence of hydrogen using a platinum-free catalyst and the second zone using a catalyst comprising a molecular sieve and a platinum-group metal component to obtain an improved yield of para-xylene from the mixture relative to prior art processes.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: February 24, 2009
    Assignee: UOP LLC
    Inventors: Lubo Zhou, Gregory F. Maher, James A. Johnson, John E. Bauer