Abstract: A method for using a Cu(hfac) precursor with a substituted phenylethylene ligand to form an adhesive seed layer on an IC surface has been provided. The substituted phenylethylene ligand includes bonds to molecules selected from the group consisting of C1 to C6 alkyl, C1 to C6 haloalkyl, phenyl, H and C1 to C6 alkoxyl. One variation, the &agr;-methylstyrene ligand precursor has proved to be especially adhesive. Copper deposited with this precursor has low resistivity and high adhesive characteristics. The seed layer provides a foundation for subsequent Cu layers deposited through either CVD, PVD, or electroplating. The adhesive seed layer permits the subsequent Cu layer to be deposited through an economical high deposition rate process.
Type:
Grant
Filed:
July 12, 1999
Date of Patent:
March 20, 2001
Assignee:
Sharp Laboratories of America, Inc.
Inventors:
Wei-Wei Zhuang, Lawrence J. Charneski, Sheng Teng Hsu
Abstract: The formation of a fully-depleted, ESD protected CMOS device is described. The device is formed on an SOI or SIMOX substrate, over which an oxide pad is grown to a thickness of between 10 and 30 nm. Appropriate ions are implanted into the oxide to adjust the threshold voltage of an ESD transistor. A portion of the top silicon film is thinned to a thickness no greater than 50 nm. The fully depleted CMOS devices are fabricated onto the thinned top silicon film, while the ESD devices are fabricated onto the top silicon film having the original thickness.
Type:
Grant
Filed:
February 26, 1998
Date of Patent:
September 5, 2000
Assignees:
Sharp Laboratories of America, Inc., Sharp Kabushiki Kaisha
Abstract: A metal(hfac), alkene ligand precursor has been provided. The alkene ligand includes double bonded carbon atoms, with first and second bonds to the first carbon atom, and third and fourth bonds to the second carbon atom. The first, second, third, and fourth bonds are selected from a the group consisting of H, C.sub.1 to C.sub.8 alkyl, C.sub.1 to C.sub.8 haloalkyl, and C.sub.1 to C.sub.8 alkoxyl. As a general class, these precursors are capable of high metal deposition rates and high volatility, despite being stable in the liquid phase at low temperatures. Copper deposited with this precursor has low resistivity and high adhesive characteristics. A synthesis method has been provided which produces a high yield of the above-described alkene ligand class of metal precursors.
Type:
Grant
Filed:
March 30, 1999
Date of Patent:
July 18, 2000
Assignee:
Sharp Laboratories of America, Inc.
Inventors:
Wei-Wei Zhuang, Tue Nguyen, Robert Barrowcliff, David Russell Evans, Sheng Teng Hsu
Abstract: A low noise CMOS buffer has been provided which includes the advantages of having a stable load impedance and a linear-ramped current waveform at the output. The buffer adds waveform shaping transistors to delay the turn on of the driver circuits, and to shape the voltage and current waveforms of the drivers. These critically placed waveform shaping transistors accomplish the function of turning off the drivers in a manner to encourage an opposite polarity linear ramp current waveform at the buffer output. A method of using waveform shaping transistors to form a stable output impedance and a linear-ramped current waveform at the output of a buffer is also provided.
Abstract: A method of fabricating a ferroelectric memory transistor using a lithographic process having an alignment tolerance of .delta., includes preparing a silicon substrate for construction of a ferroelectric gate unit; implanting boron ions to form a p- well in the substrate; isolating plural device areas on the substrate; forming a FE gate stack surround structure; etching the FE gate stack surround structure to form an opening having a width of L1 to expose the substrate in a gate region; depositing oxide to a thickness of between about 10 nm to 40 nm over the exposed substrate; forming a FE gate stack over the gate region, wherein the FE gate stack has a width of L2, wherein L2.gtoreq.L1+2.delta.; depositing a first insulating layer over the structure; implanting arsenic or phosphorous ions to form a source region and a drain region; annealing the structure; depositing a second insulating layer; and metallizing the structure.
Type:
Grant
Filed:
November 5, 1998
Date of Patent:
April 11, 2000
Assignee:
Sharp Laboratories of America, Inc.
Inventors:
Sheng Teng Hsu, Jer-shen Maa, Fengyang Zhang, Tingkai Li