Abstract: A radar imaging system is provided that directly measures the spatial frequency components of a scene via digital-beam-forming techniques applied along the cross-track dimension. Separate transmit and receive antennas provide increased integration time for the receive function, thus improving the signal-to-noise ratio. A segmented receive antenna is employed and processed as a series of interferometers sensitive to spatial frequency components of the scene corresponding to the separation between pairs of antenna elements. Range gating is used in the along-track dimension to divide the return from an illuminated swath into multiple range bins that may be processed independently. The system provides an improved signal-to-noise ratio and lends significant flexibility to the image formation process, improving the quality of the radar imaging. An embodiment having multiple transmit antennas is also provided that enables the generation of three-dimensional stereoscopic radar images.
Abstract: A system and method for providing interleaving point-of-load (POL) regulators such that each regulator's switching cycle is phase displaced with respect to those of other POL regulators in the array is disclosed. As a result, the aggregate input and/or output reflected ripple and noise of the input, output, or both is reduced. Each regulator in the array is associated with an unique address. A serial data-line writes the phase spacing programmed to each addressable POL regulator in the array. The present invention permits phase displacement of POL regulators without limitation to the input and output voltages of each of the regulators in the array. The array of POL regulators may also operate in a phase displaced mode with only a single control line. The need for separate controllers and multiple control lines is thereby eliminated.
Abstract: The present invention is a unified spine structure that EFEM components, such as a wafer handling robot and a SMIF pod advance assembly, may mount to. The frame includes multiple vertical struts that are mounted to an upper support member and a lower support member. Structurally tying the vertical struts to the support members creates a rigid body to support the EFEM components. The vertical struts also provide a common reference that the EFEM components may align with. This eliminates the need for each EFEM component to align with respect to each other. Thus, if one EFEM component is removed it will not affect the alignment and calibration of the remaining secured EFEM components. The unified frame also creates an isolated storage area for the SMIF pod door and the port door within the environment that is isolated from the outside ambient conditions.
Type:
Grant
Filed:
March 1, 2002
Date of Patent:
September 5, 2006
Assignee:
Asyst Technologies, Inc.
Inventors:
Anthony C. Bonora, Richard H. Gould, Roger G. Hine, Michael Krolak, Jerry A. Speasl
Abstract: An impedance matching circuit in accordance with the principles of the present invention employs series-connected transmission lines to match a high reflection coefficient source impedance with a load impedance. The matching circuit is formed on a dielectric substrate material and accommodates the relatively limited capabilities of photo-lithographic circuit production. The new impedance matching circuit may be constructed of three series-connected transmission line sections. A first section, the section that is to be connected to the source, transforms the high source impedance into a relatively low valued impedance that is substantially resistive. The reflection coefficient of the first section is substantially equal to the reflection coefficient of the source. A second may be implemented as a quarter-wave transformer that transforms the low impedance developed by the first section into an intermediate impedance value.
Type:
Grant
Filed:
November 13, 1998
Date of Patent:
January 23, 2001
Assignee:
Intermec IP Corp.
Inventors:
Venkata S. Rao Kodukula, Dah-Weih Duan, Michael John Brady