Patents Represented by Attorney, Agent or Law Firm Michael F. Labbee
  • Patent number: 6827095
    Abstract: A modular microfluidic system includes a plurality of discrete microfluidic modules each capable of performing at least one operation and at least one microfluidic coupling device for fluidically coupling the modules to perform a sequence of operations. The microfluidic modules and coupling devices may be constructed according to various techniques. In one embodiment, coupling devices are fabricated from multiple layers and each include a fluidic inlet port, a fluidic outlet port, and at least one sandwiched stencil layer having a microfluidic channel formed therein. Also described are integrated microfluidic systems and methods capable of performing various sequences of operations.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: December 7, 2004
    Assignee: Nanostream, Inc.
    Inventors: Stephen D. O'Connor, Christoph D. Karp, Eugene Dantsker, Marci Pezzuto
  • Patent number: 6814859
    Abstract: A frit for use in multi-layer microfluidic separation devices is provided. The frit comprises a polymeric membrane that may be securely bonded within the device and minimizes lateral wicking. A secure bond is ensured by treating the polymer to match its surface energy to that of the materials to which it is bound. Treatments include plasma treatment, irradiation and the application of acids.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: November 9, 2004
    Assignee: Nanostream, Inc.
    Inventors: Jeffrey A. Koehler, Paren P. Patel
  • Patent number: 6814938
    Abstract: Non-planar microfluidic devices and methods for transferring fluids between vessels and microfluidic devices are provided. The devices may be contoured to physically contact non-planar vessels, such as pipes, tubes, vials, or syringes to establish fluid communication between a vessel and a microfluidic device. Devices according to the invention may be constructed from flexible, rigid, or combinations of flexible and rigid materials. In certain embodiments, microfluidic devices are composed of sandwiched stencils, and self-adhesive tapes may be used for one or more layers. A microfluidic device may be removably attached to a vessel with a non-permanent adhesive or adhesive layer. Continuously wrapped microfluidic devices fashioned from a single layer, in addition to rewindable microfluidic devices constructed from multiple layers, are provided. A multi-plunger syringe permits a microfluidic device or other reservoir coupled to the vessel to be filled on the draw stroke of the syringe plunger.
    Type: Grant
    Filed: May 23, 2001
    Date of Patent: November 9, 2004
    Assignee: Nanostream, Inc.
    Inventors: Christoph D. Karp, Stephen D. O'Connor, Vincent K. Gustafson
  • Patent number: 6811695
    Abstract: Multi-layer microfluidic devices incorporating a filter element are provided. A filter element is compressively restrained between device layers, such that the compression promotes a tight seal between device layers and resists fluid leakage around the filter element.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: November 2, 2004
    Assignee: Nanostream, Inc.
    Inventor: Christoph D. Karp
  • Patent number: 6812458
    Abstract: Systems and methods for collecting the output of multiple simultaneously operated chromatography columns and providing the outputs to a single mass spectrometer are provided. Such systems utilize predetermined lengths of microfluidic tubing that act as storage buffers for the substantially all of the output of each column, preserving all data and, because the storage buffers are microfluidic, there is minimal diffusion between sample bands and solvent and signal clarity is preserved.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: November 2, 2004
    Assignee: Nanostream, Inc.
    Inventors: Matthew M. Gregori, Joseph F. Covington, Steven E. Hobbs
  • Patent number: 6755211
    Abstract: Microfluidic systems and devices having integrated fluidic impedances are provided. Such impedances hinder the passage of fluid at low differential pressures, but allow fluid flow at higher differential pressures. Impedances are formed at the overlap of two or more microfluidic channels contained in different layers of a device. Such devices can be rapidly prototyped and can be assembled to contain multiple fluidic impedances to perform complex fluid handling tasks, including the metering of small aliquots from a larger fluid volume. Various means may be used to overcome the fluidic impedances.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: June 29, 2004
    Assignee: Nanostream, Inc.
    Inventors: Stephen D. O'Connor, Eugene Dantsker, Marci Pezzuto
  • Patent number: 6748978
    Abstract: Microfluidic devices having porous materials that restrict fluid flow rate for a given pressure are provided. Multiple porous regions can be constructed in a single device so that they have different valving capabilities or impedances, and in unison can control the overall direction of fluid flow. Porous regions can be constructed in various ways, such as, for example: by inserting porous materials into or between channels; by sandwiching one or more sheets or layers of porous materials between other layers of a device; or by inserting a liquid, solution, slurry, or suspension into a microfluidic channel and then permitting the formation of porous deposits by promoting at least partial evaporation. Adhesive tape may be used for one or more layers of such a microfluidic device.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: June 15, 2004
    Assignee: Nanostream, Inc.
    Inventors: Marci Pezzuto, Stephen D. O'Connor
  • Patent number: 6739576
    Abstract: A microfluidic flow control device includes a fluidic chamber, a first and a second microfluidic channel, at least one sealing surface between the first and the second channels, and a floating element disposed within the chamber. The floating element is capable of intermittently engaging the sealing surface, and movement of the floating element affects fluid flow between the first channel and the second channel. The floating element may be moved by fluid pressure, gravity, or an applied force such as a magnetic field. Multiple flow control regions may be integrated into a flow control system.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: May 25, 2004
    Assignee: Nanostream, Inc.
    Inventors: Stephen D. O'Connor, Eugene Dantsker, Adrian Hightower
  • Patent number: 6729352
    Abstract: A microfluidic reactor for performing chemical and biological synthesis reactions, including chemical and biological syntheses of organic, polymer, inorganic, oligonucleotide, peptide, protein, bacteria, and enzymatic products is provided. Two fluids are input into the device, mixed in a mixing region and provided to a long, composite reaction channel. Fluids flowing through the reaction channel may be diverted at a diversion region into a sample channel. Fluids in the sample channel may be mixed at a second region, with additional reagents.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: May 4, 2004
    Assignee: Nanostream, Inc.
    Inventors: Stephen D. O'Connor, Christoph D. Karp, Marci Pezzuto, Paren P. Patel, Steven E. Hobbs, Eugene Dantsker
  • Patent number: 6676835
    Abstract: Microfluidic separators for separating multiphase fluids are described. Two or more microfluidic outlet channels within the device meet at an overlap region. The overlap region may be in fluid communication with an inlet channel. The inlet channel and each outlet channel are disposed within different layers of a three-dimensional device. Each channel is defined through the entire thickness of a stencil layer. A multiphase fluid flows through an inlet channel into an overlap region from where the separated phases can be withdrawn through the outlet channels.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: January 13, 2004
    Assignee: Nanostream, Inc.
    Inventors: Stephen D. O'Connor, Christoph D. Karp
  • Patent number: 6644944
    Abstract: Microfluidic fluid control devices are provided. One microfluidic fluid control device can be used as a uni-directional valve within a microfluidic system. The invention also provides a microfluidic pump mechanism having two unidirectional valves separated by an expandable reservoir. Such devices may be formed in multiple layers and utilize flexible membranes.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: November 11, 2003
    Assignee: Nanostream, Inc.
    Inventor: Christoph D. Karp
  • Patent number: 6619311
    Abstract: Microfluidic flow control devices are provided. In one embodiment, a regulating device includes overlapping channel segments separated by a deformable membrane in fluid communication with one another. Pressure differentials between the channel segments deform the membrane towards the channel with the lower pressure, thereby restricting flow.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: September 16, 2003
    Assignee: Nanostream, Inc.
    Inventors: Stephen D. O'Connor, Christoph D. Karp
  • Patent number: 6561208
    Abstract: The invention provides microfluidic devices with embedded fluidic impedances. Such impedances do not allow fluid to pass at a low differential pressure, but allow fluid to flow at a higher differential pressure. Impedances are formed by the three dimensional overlap of two or more channels contained within layers of the device. Such devices can be rapidly protyped and can be assembled to contain multiple fluidic impedances to perform complex fluid handling tasks, including metering defined volumes of samples and dividing samples into aliquots.
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: May 13, 2003
    Assignee: Nanostream, Inc.
    Inventors: Stephen D. O'Connor, Eugene Dantsker, Marci Pezzuto
  • Patent number: 6536477
    Abstract: Microfluidic coupling devices capable of connecting more than one microfluidic module together to form a larger, integrated system are described. These devices are constructed in a number of ways. In a certain embodiments, the coupler is constructed from laminated materials and mates to one or more microfluidic devices using adhesive. The device can be used to place fluid into a microfluidic device, to remove fluid from a microfluidic device, or to transfer fluid between two or more microfluidic devices. Also described are modular microfluidic systems formed from microfluidic modules made using various techniques and/or useful for performing various functions.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: March 25, 2003
    Assignee: Nanostream, Inc.
    Inventors: Stephen D. O'Connor, Eugene Dantsker, Christoph D. Karp, Marci Pezzuto
  • Patent number: 6499499
    Abstract: Microfluidic devices for splitting an established fluidic flow through a microfluidic channel among multiple downstream microfluidic channels include a plurality of elevated flow resistance regions to promote precise and predictable splitting. Each elevated resistance region imparts a flow resistance that is substantially greater than the characteristic resistance to established flow of its associated downstream channel. Elevated flow resistance regions may include one or more porous materials and/or alterations to the channel geometry of at least a portion of a downstream channel.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: December 31, 2002
    Assignee: Nanostream, Inc.
    Inventors: Eugene Dantsker, Christoph D. Karp, Marci Pezzuto, Steven E. Hobbs, Paren P. Patel
  • Patent number: 6501654
    Abstract: In accordance with the present invention there is provided a microfluidic heat exchange system for cooling heat-generating components of electronic equipment, computers, lasers, analytical instruments, medical equipment and the like. Both direct contact and indirect contact microfluidic systems are described. Also described are microfluidic systems that incorporate remote heat rejection systems that may be located outside the body of the equipment that contains the heat generating components that need cooling.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: December 31, 2002
    Assignee: Nanostream, Inc.
    Inventors: Stephen D. O'Connor, Eugene Dantsker
  • Patent number: 6481453
    Abstract: Microfluidic devices and methods for metering discrete plugs of fluid are provided. The microfluidic devices include a trunk channel and a branch channel having an impedance region. A fluid is supplied to the trunk channel and fills the branch channel to the impedance region. The fluid is then flushed from the trunk channel leaving the branch channel filled. Because the branch channel has a volume, a discrete plug of the fluid having a volume substantially equal to that of the branch channel is formed.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: November 19, 2002
    Assignee: Nanostream, Inc.
    Inventors: Stephen D. O'Connor, Christoph D. Karp, Marci Pezzuto, Eugene Dantsker
  • Patent number: 5881384
    Abstract: A directable, hand-wearable communication device provides a frontal display surface and a rear display surface to which images can be applied for promoting teams, athletes, corporate sponsors, political parties and the like. Frontal and rear display surfaces may be provided by corresponding members that are joined at their perimeters to form a pocket for receiving a human hand and presenting no obstructions between the fingers, including the thumb. The device has an aperture at the lower extremity of the joined perimeter for permitting access by the hand to the pocket. An elastic neck portion is preferably joined along the edge of the aperture to snugly fit around the wrist of the wearer and keep the device securely in his or her possession, particularly during vigorous use.
    Type: Grant
    Filed: February 10, 1997
    Date of Patent: March 16, 1999
    Inventor: Douglas Anthony Williams
  • Patent number: 5851583
    Abstract: A process for blending paint to match an existing finish. A first color imparting component is first provided, in an amount proportionate to a paint formulation, and mixed with a base coat reducer to obtain a first reduced component. A second color imparting component is also provided, in an amount proportionate to the amount of the first color imparting component according to the paint formulation, and mixed with a base coat reducer to obtain a second reduced component. A portion of the first reduced component is then mixed with a portion of the second reduced component to obtain a base paint. The base paint is tested by applying the base paint onto a surface and allowing it to dry to obtain a painted surface, and comparing the painted surface with an existing finish after simulating a clear coat finish with a lustrous liquid.
    Type: Grant
    Filed: December 6, 1996
    Date of Patent: December 22, 1998
    Assignee: Total Car Franchising Corporation Colors on Parade
    Inventor: Thomas J. Kronenwetter