Patents Represented by Attorney Michael F. Scalise
  • Patent number: 6783888
    Abstract: The minimization or elimination of swelling in lithium cells containing CFx as part of the cathode electrode and discharged under high rate applications is described. When CFx materials are synthesized from fibrous carbonaceous materials, in comparison to petroleum coke, cell swelling is greatly reduced, and in some cases eliminated. Preferred precursors are carbon fibers and MCMB.
    Type: Grant
    Filed: May 17, 2001
    Date of Patent: August 31, 2004
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Hong Gan, Sally Ann Smesko, Esther S. Takeuchi, Steven M. Davis
  • Patent number: 6781088
    Abstract: A pin to plate joint and method of making the joint comprising a plate comprising an entry side and an exit side with the plate defining cutouts, and the pin movable through the plate from the entry side to the exit side and in doing so pushes tab members at angles to the exit side of the plate at bends. The bends in the plate define an opening in the plate, and flow spaces are defined between the pin sidewall and the bends in the plate, with the tab members being heated to form melted tab material and flowing the melted tab material into the flow spaces and cooling, forming a pin to plate joint.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: August 24, 2004
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: Kenneth Grubb, Philip Wutz
  • Patent number: 6780542
    Abstract: The present invention is directed to providing a lithium carbonate passivation layer on lithium through exposure of the active material to gaseous carbon dioxide prior to cell assembly. This results in an electrochemical cell which possesses improved safety and voltage delay characteristics in comparison to prior art cells comprising unexposed lithium. The preferred cell is of a lithium oxyhalide chemistry.
    Type: Grant
    Filed: September 13, 2001
    Date of Patent: August 24, 2004
    Assignee: Wilson Greatbatch Ltd.
    Inventors: David M. Spillman, Esther S. Takeuchi
  • Patent number: 6768629
    Abstract: A filtered feedthrough including a ferrule surrounding an insulator supporting one or more lead wires and at least one ground pin is described. The insulator defines a channel cutout extending from a first insulator side to a channel cutout bottom part way through the thickness of the insulator and in communication with the ferrule. An attached filter capacitor shunts electromagnetic interference from the lead wire to the ground pin, and the ground pin is in electrical communication with the ferrule by way of a ferrule-ground pin braze joint formed in the channel cutout.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: July 27, 2004
    Assignee: Greatbatch-Hittman, Inc.
    Inventors: Kevin M. Allen, Thomas W. Shipman, Christine Frysz
  • Patent number: 6767670
    Abstract: An alkali metal/solid cathode electrochemical cell, such as of a Li/SVO couple, having the cathode material supported on a titanium current collector screen coated with a carbonaceous material is described. The thusly-coated titanium current collector provides the cell with higher rate capability in comparison to cells of a similar chemistry having the cathode active material contacted to an uncoated titanium current collector.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: July 27, 2004
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: William M. Paulot, Mark J. Roy, Gary L. Freitag, Dominick J. Frustaci, Hong Gan, Esther S. Takeuchi
  • Patent number: 6761728
    Abstract: Miniature defibrillators and cardioverters detect abnormal heart rhythms and automatically apply electrical therapy to restore normal heart function. Critical components in these devices are aluminum electrolytic capacitors, which store and deliver one or more life-saving bursts of electric charge to a heart of a patient. This type of capacitor requires regular “reform” to preserve its charging efficiency over time. Because reform expends valuable battery life, manufacturers developed wet-tantalum capacitors, which are generally understood not to require reform. Yet, the present inventors discovered through extensive study that wet-tantalum capacitors exhibit progressively worse charging efficiency over time. Accordingly, to address this problem, the inventors devised unique reform techniques for wet-tantalum capacitors.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: July 13, 2004
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: Robert S. Harguth, Ron Balczewski, William J. Linder, Gregory Scott Munson, Michael Wesley Paris
  • Patent number: 6762391
    Abstract: A resistance welding electrode that is particularly suited for resistance spot welding a workpiece to a substrate without cross-contaminating specific portions of the workpiece is described. This is done by sheathing an internal surface of the welding electrode with a thermoplastic polymeric material. Then, there is only contact between the welding electrode and the workpiece at the very distal end of the electrode adjacent to where the workpiece is to be connected to the substrate. Contamination in this area is not detrimental because subsequent workpiece plating does not take place there.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: July 13, 2004
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: Marvin Wile, David Warchocki
  • Patent number: 6759170
    Abstract: A lithium ion electrochemical cell having high charge/discharge capacity, long cycle life and exhibiting a reduced first cycle irreversible capacity, is described. The stated benefits are realized by the addition of at least one carbonate additive to an electrolyte comprising an alkali metal salt dissolved in a solvent mixture including ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate. The preferred additive is either a linear or cyclic carbonate containing covalent O—X and O—Y bonds on opposite sides of a carbonyl group wherein at least one of the O—X and the O—Y bonds has a dissociation energy less than about 80 kcal/mole.
    Type: Grant
    Filed: September 5, 2002
    Date of Patent: July 6, 2004
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: Hong Gan, Esther S. Takeuchi, Robert Rubino
  • Patent number: 6759163
    Abstract: A reverse mismatched compression glass-to-metal seal is described. In this seal, the coefficient of thermal expansion of the insulating glass is lower than that of the terminal lead and, the ferrule or casing body has a similar or higher coefficient of thermal expansion than that of the terminal lead.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: July 6, 2004
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Christine A. Frysz, Harvey A. Hornung, II, Joseph M. Prinzbach
  • Patent number: 6759164
    Abstract: A mixture of polymeric binders that is insoluble in nonaqueous organic electrolytes activating alkali metal or alkali metal ion electrochemical cells, is described. The mixed binder formulation provides electrodes that are flexible and non-brittle, and cells incorporating the electrodes are dischargeable at elevated temperatures. A preferred binder formulation is a mixture of polyvinylidene and polyimide binders.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: July 6, 2004
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Marcus Palazzo, Esther S. Takeuchi
  • Patent number: 6746804
    Abstract: An alkali metal secondary electrochemical cell, and preferably a lithium ion cell, activated with an equilibrated quaternary solvent system, is described. The solvent system comprises a mixture of dialkyl carbonates and cyclic carbonates, and preferably a quaternary mixture of dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate and ethylene carbonate with dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate in an equilibrated molar mixture. Lithium ion cells activated with this electrolyte have good room temperature cycling characteristics and excellent low temperature discharge behavior.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: June 8, 2004
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: Hong Gan, Esther S. Takeuchi, Robert Rubino
  • Patent number: 6743547
    Abstract: An electrode having the configuration: first active material/current collector/second active material is described. One of the electrode active materials in a cohesive form of active particles being firmly held together as part of the same mass is incapable of moving through the current collector to the other side thereof. However, in an un-cohesive form of active particles not being firmly held together as part of a mass, the one electrode active material is capable of communication through the current collector. The other or second active material is in a form in-capable of communication through the current collector, whether it is in a cohesive or un-cohesive powder form. Then, the assembly of first active material/current collector/second active material is pressed from either the direction of the first electrode active material to the second electrode active material, or visa versa.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: June 1, 2004
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Hong Gan, Sally Ann Smesko, Esther S. Takeuchi
  • Patent number: 6740420
    Abstract: A method for improving the electrical conductivity of a substrate of metal, metal alloy or metal oxide comprising depositing a small or minor amount of metal or metals from Group VIIIA metals (Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt) or from Group IA metals (Cu, Ag, Au) on a substrate of metal, metal alloys and/or metal oxide from Group IVA metals (Ti, Zr, Hf), Group VA metals (V, Nb, Ta), Group VIA metals (Cr, Mo, W) and Al, Mn, Ni and Cu and then directing a high energy beam onto the substrate to cause an intermixing of the deposited material with the native oxide of the substrate metal or metal alloy. The native oxide layer is changed from electrically insulating to electrically conductive. The step of depositing can be carried out, for example, by ion beam assisted deposition, electron beam deposition, chemical vapor deposition, physical vapor deposition, plasma assisted, low pressure plasma and plasma spray deposition and the like.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: May 25, 2004
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: Barry Muffoletto, Ashish Shah, Donald H. Stephenson
  • Patent number: 6733926
    Abstract: An electrode component for an electrochemical cell or a capacitor is described wherein the electrode is produced by physical vapor depositing an electrode active material onto a substrate to coat the substrate. The thusly produced electrode is useful as a cathode in a primary electrochemical cell and as a cathode and an anode in a secondary cell, and as an electrode in an electrochemical capacitor and an electrolytic capacitor.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: May 11, 2004
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Barry C. Muffoletto, Ashish Shah, Neal N. Nesselbeck
  • Patent number: 6730437
    Abstract: The negative electrode or anode for a secondary electrochemical cell comprising a mixture of graphite or “hairy carbon” and a lithiated metal oxide, a lithiated mixed metal oxide or a lithiated metal sulfide, and preferably a lithiated metal vanadium oxide, is described. A most preferred formulation is graphite mixed with lithiated silver vanadium oxide or lithiated copper silver vanadium oxide.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: May 4, 2004
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Randolph A. Leising, Esther S. Takeuchi
  • Patent number: 6727022
    Abstract: The present comprises an electrode having the configuration: first active material/current collector screen/second active material. When one of the active materials is in a powder form, it is possible for that material to move through openings in the current collector screen to “contaminate” the interface between the other active material and the current collector. The present invention consists of having the other electrode active materials in a form incapable of moving through the current collector to the other side thereof. Then, the assembly is pressed from the direction of the other electrode active material. This seals off the current collector as the pressing force moves the current collector against the powdered electrode active material.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: April 27, 2004
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Hong Gan, Esther S. Takeuchi
  • Patent number: 6696201
    Abstract: An electrochemical cell comprising an anode of a Group IA metal and a cathode of a mixed phase metal oxide prepared from a combination of starting materials comprising vanadium oxide and a mixture of at least one of a decomposable silver-containing constituent and a decomposable copper-containing constituent is described. The starting materials are mixed together to form a homogeneous admixture that is not further mixed once decomposition heating begins. The resulting cathode material is particularly useful for implantable medical applications.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: February 24, 2004
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Randolph A. Leising, Esther S. Takeuchi
  • Patent number: 6692865
    Abstract: A new sandwich cathode design is provided having a first cathode structure of a first cathode active material of a relatively low energy density but of a relatively high rate capability, for example SVO, mixed with a second cathode active material having a relatively high energy density but a relatively low rate capability, for example CFx, with the percentage of SVO being less than that of CFx and sandwiched between two current collectors. Then, a second cathode mixture of SVO and CFx active materials is contacted to the outside of the current collectors. However, the percentage of SVO to CFx is greater in the second structure than in the first. Such an exemplary cathode design might look like: (100−y)% SVO+y% CFx, wherein 0≦y≦100/current collector/(100−x)% SVO+x% CFx, wherein 0≦x≦100/current collector/(100−y)% SVO+y% CFx, wherein 0≦y≦100, and wherein the ratio of x to y is selected from the group consisting of y<x, x<y and x=y.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: February 17, 2004
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Hong Gan, Esther S. Takeuchi
  • Patent number: 6692871
    Abstract: A new sandwich cathode design having a first cathode active material of a relatively low energy density but of a relatively high rate capability sandwiched between two current collectors and with a second cathode active material having a relatively high energy density but of a relatively low rate capability in contact with the opposite sides of the two current collectors, is described. The present cathode design is relatively safer under short circuit and abuse conditions than cells having a cathode active material of a relatively high rate density but a relatively low energy capability alone. A preferred cathode is: CFx/current collector/SVO/current collector/CFx. The SVO provides the discharge end of life indication since CFx and SVO cathode cells discharge under different voltage profiles. This is useful as an end-of-replacement indicator (ERI) for an implantable medical device, such as a cardiac pacemaker.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: February 17, 2004
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Hong Gan, Esther S. Takeuchi
  • Patent number: 6690512
    Abstract: An ergonomic adjustable microscope device comprising a second base pivotably attached to a first base positioned on a support surface is described. The device includes a mechanism for locking a microscope in a nonmovably mounted relationship on the upper surface of the second support base. Manually rotatable adjusting mechanisms located at each rearward corner of the second support base and at all four corners of the first base provide for selectively varying the rearward vertical height of the second support base and mounted microscope and the vertical height of the first base relative to the support surface, respectively, so that a user of the microscope is able to maintain a more neutral position in the neck, back, and shoulder areas.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: February 10, 2004
    Assignee: Wilson Greatbatch Ltd.
    Inventor: Raymond S. Konopa