Abstract: The present invention provides a novel means to provide more effective mixing of gas and fluids in a height constrained interbed space of a catalytic reactor without increasing pressure drop. In particular, the device improves the effectiveness of an existing mixing volume in mixing the gas phase and liquid phase of two-phase systems. According to the present invention, the mixing device helps create a highly arcuate flow to incoming effluents and a high degree of mixing within a constrained interbed space of a catalytic reactor.
Abstract: Disclosed is a method for preparing crystalline zeolite SSZ-13 said method comprising (a) preparing a reaction mixture comprising (1) at least one active source of an oxide of a tetravalent element or mixture of tetravalent elements, (2) optionally at least on active source of an oxide of a trivalent element or mixture of trivalent elements (3) at least one active source of an alkali metal, (4) seed crystals of zeolite SSZ-13, (5) benzyl trimethylammonium cation in an amount sufficient to form crystals of zeolite SSZ-13, the benzyl trimethylammonium, cation being used in the absence of a 1-adamantammonium cation, and (6) an amount of water that is not substantially in excess of the amount required to cause and maintain crystallization of the small pore zeolite; and (b) heating said reaction mixture at crystallization conditions for sufficient time to form crystallized material containing crystals of SSZ-13.