Patents Represented by Attorney, Agent or Law Firm Miguel A. Valdes
  • Patent number: 5363244
    Abstract: An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage.
    Type: Grant
    Filed: October 28, 1992
    Date of Patent: November 8, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Donald A. Bender, Thomas Kuklo
  • Patent number: 5361056
    Abstract: A wire cable assembly (10, 310) adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies (532) for the superconducting super collider. The correction coil cables (10, 310) have wires (14, 314) collected in wire arrays (12, 312) with a center rib (16, 316) sandwiched therebetween to form a core assembly (18, 318 ). The core assembly (18, 318) is surrounded by an assembly housing (20, 320) having an inner spiral wrap (22, 322) and a counter wound outer spiral wrap (24, 324). An alternate embodiment (410) of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable (410) on a particle tube (733) in a particle tube assembly (732).
    Type: Grant
    Filed: April 9, 1991
    Date of Patent: November 1, 1994
    Assignee: United States Department of Energy
    Inventor: Sou-Tien Wang
  • Patent number: 5359246
    Abstract: A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub.
    Type: Grant
    Filed: July 12, 1993
    Date of Patent: October 25, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Thomas C. Kuklo
  • Patent number: 5359252
    Abstract: An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated.
    Type: Grant
    Filed: March 30, 1993
    Date of Patent: October 25, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Charles D. Swift, John W. Bergum
  • Patent number: 5357342
    Abstract: Apparatus and process are disclosed for calibrating measurements of the phase of the polarization of a polarized beam and the angle of the polarized optical beam's major axis of polarization at a diagnostic point with measurements of the same parameters at a point of interest along the polarized beam path prior to the diagnostic point. The process is carried out by measuring the phase angle of the polarization of the beam and angle of the major axis at the point of interest, using a rotatable polarizer and a detector, and then measuring these parameters again at a diagnostic point where a compensation apparatus, including a partial polarizer, which may comprise a stack of glass plates, is disposed normal to the beam path between a rotatable polarizer and a detector. The partial polarizer is then rotated both normal to the beam path and around the axis of the beam path until the detected phase of the beam polarization equals the phase measured at the point of interest.
    Type: Grant
    Filed: December 30, 1992
    Date of Patent: October 18, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Derek E. Decker, John S. Toeppen
  • Patent number: 5355387
    Abstract: An interface module (10) for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams (36) in the form of illumination bar (54) to the lasing zone (18) of a dye laser device, in particular to a dye laser amplifier (12). The preferred interface module (10) includes an optical fiber array (30) having a plurality of optical fibers (38) arrayed in a co-planar fashion with their distal ends (44) receiving coherent laser energy from an enhancing laser source (46), and their proximal ends (4) delivered into a relay structure (3). The proximal ends (42) of the optical fibers (38) are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array (36) delivered from the optical fiber array (30) is acted upon by an optical element array (34) to produce an illumination bar (54) which has a cross section in the form of a elongated rectangle at the position of the lasing window (18).
    Type: Grant
    Filed: February 10, 1994
    Date of Patent: October 11, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Ronald E. English, Jr., Steve A. Johnson
  • Patent number: 5353167
    Abstract: A unique lens or mirror mount having adjustable constraints at two key locations to allow for "X" and "Y" tilts of the mirror only. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time.
    Type: Grant
    Filed: July 22, 1992
    Date of Patent: October 4, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Thomas C. Kuklo, Donald A. Bender
  • Patent number: 5353314
    Abstract: An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture.
    Type: Grant
    Filed: September 30, 1991
    Date of Patent: October 4, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Michael J. Schaffer
  • Patent number: 5347247
    Abstract: A technique is provided for integrally mounting a device such as an electro-optic device (50) in a transmission line to avoid series resonant effects. A center conductor (52) of the transmission line has an aperture (58) formed therein for receiving the device (50). The aperture (58) splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface (54), which is spaced apart from the center conductor with a dielectric material (56). One set of electrodes formed on the surface of the electro-optic device (50) is directly connected to the center conductor 52 and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface (54).
    Type: Grant
    Filed: June 2, 1993
    Date of Patent: September 13, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Michael E. Gruchalla
  • Patent number: 5347209
    Abstract: A method and apparatus for predict-ahead pulse-to-pulse voltage control in a pulsed power supply system is disclosed. A DC power supply network is coupled to a resonant charging network via a first switch. The resonant charging network is coupled at a node to a storage capacitor. An output load is coupled to the storage capacitor via a second switch. A de-Q-ing network is coupled to the resonant charging network via a third switch. The trigger for the third switch is a derived function of the initial voltage of the power supply network, the initial voltage of the storage capacitor, and the present voltage of the storage capacitor. A first trigger closes the first switch and charges the capacitor. The third trigger is asserted according to the derived function to close the third switch. When the third switch is closed, the first switch opens and voltage on the node is regulated. The second trigger may be thereafter asserted to discharge the capacitor into the output load.
    Type: Grant
    Filed: August 21, 1992
    Date of Patent: September 13, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Anthony N. Payne, James A. Watson, Stephen E. Sampayan
  • Patent number: 5341392
    Abstract: The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window.
    Type: Grant
    Filed: June 22, 1984
    Date of Patent: August 23, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Bruce E. Warner, John L. Miller, Earl R. Ault
  • Patent number: 5335548
    Abstract: A non-linear optical crystal vibration sensing device (10) including a photorefractive crystal (26) and a laser (12). The laser (12 ) produces a coherent light beam (14) which is split by a beam splitter (18) into a first laser beam (20) and a second laser beam (22). After passing through the crystal (26) the first laser beam (20) is counter-propagated back upon itself by a retro-mirror (32), creating a third laser beam (30). The laser beams (20, 22, 30) are modulated, due to the mixing effect within the crystal (26) by vibration of the crystal (30). In the third laser beam (30), modulation is stable and such modulation is converted by a photodetector (34) into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal (26).
    Type: Grant
    Filed: June 19, 1992
    Date of Patent: August 9, 1994
    Assignee: The United States of America as represented by the Department of Energy
    Inventor: Ralph Kalibjian
  • Patent number: 5334239
    Abstract: A separation device employing a gas separation filter and swirler vanes for separating gas from a gasliquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter.
    Type: Grant
    Filed: November 29, 1993
    Date of Patent: August 2, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Hwang Choe, Thomas T. Fallas
  • Patent number: 5335236
    Abstract: A method of producing a long output pulse (SA) from a short pump pulse (P), using an elongated amplified fiber (11) having a doped core (12) that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding 13. A seed beam (S) of the longer wavelength is injected into the core (12) at one end of the fiber (11) and a pump pulse (P) of the shorter wavelength is injected into the cladding (13) at the other end of the fiber (11). The counter-propagating seed beam (S) and pump pulse (P) will produce an amplified output pulse (SA) having a time duration equal to twice the transit time of the pump pulse (P) through the fiber (11) plus the length of the pump pulse (P).
    Type: Grant
    Filed: June 3, 1993
    Date of Patent: August 2, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: John S. Toeppen
  • Patent number: 5325095
    Abstract: A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform.
    Type: Grant
    Filed: July 14, 1992
    Date of Patent: June 28, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Kenneth G. Vadnais, Michael B. Bashforth, Tricia S. Lewallen, Sharyn R. Nammath
  • Patent number: 5325391
    Abstract: A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior.
    Type: Grant
    Filed: June 9, 1993
    Date of Patent: June 28, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Jerome P. Hall, Robert M. Sawvel, Vaughn G. Draggoo
  • Patent number: 5319662
    Abstract: The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam.
    Type: Grant
    Filed: June 22, 1984
    Date of Patent: June 7, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Bruce E. Warner, Earl R. Ault
  • Patent number: 5315610
    Abstract: A modularized system for controlling the gas pressure within a copper vapor or like laser is described herein. This system includes a gas input assembly which serves to direct gas into the laser in a controlled manner in response to the pressure therein for maintaining the laser pressure at a particular value, for example 40 torr. The system also includes a gas output assembly including a vacuum pump and a capillary tube arrangement which operates within both a viscous flow region and a molecular flow region for drawing gas out of the laser in a controlled manner.
    Type: Grant
    Filed: September 22, 1986
    Date of Patent: May 24, 1994
    Assignee: The United States of America as represented the the Unites States Department of Energy
    Inventors: Terry Alger, Dennis M. Uhlich, William J. Benett, Earl R. Ault
  • Patent number: 5311766
    Abstract: An improved method and apparatus as disclosed for measuring the permeability of multiple phases through a rock fracture. The improvement in the method comprises delivering the respective phases through manifolds to uniformly deliver and collect the respective phases to and from opposite edges of the rock fracture in a distributed manner across the edge of the fracture. The improved apparatus comprises first and second manifolds comprising bores extending within porous blocks parallel to the rock fracture for distributing and collecting the wetting phase to and from surfaces of the porous blocks, which respectively face the opposite edges of the rock fracture. The improved apparatus further comprises other manifolds in the form of plenums located adjacent the respective porous blocks for uniform delivery of the non-wetting phase to parallel grooves disposed on the respective surfaces of the porous blocks facing the opposite edges of the rock fracture and generally perpendicular to the rock fracture.
    Type: Grant
    Filed: July 7, 1992
    Date of Patent: May 17, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Peter Persoff, Karsten Pruess, Larry Myer
  • Patent number: H1364
    Abstract: A fluorescent fiber (13) having a doped core (16) is pumped (11) by light (18) of a relatively short wavelength to produce fluorescence at a longer wavelength that is detected by detector (24). The level of fluorescence is monitored (26) and evaluated to provide information as to the excitation of the fiber (13) or the environment thereof. In particular, the level of intensity of the detected fluorescence may be used to measure the intensity of a light beam (18) passing axially through an optical fiber system (12) (FIG. 1 ), or the intensity of a light beam (46) passing radially through a fluorescent fiber (13) (FIG. 2 ), or the level of a fluid (32) in a tank (31) (FIG. 3 ), or a scintillation event (37) in a fluorescent fiber (13) pumped to produce amplification of the scintillation event (FIG. 4 ).
    Type: Grant
    Filed: June 3, 1993
    Date of Patent: October 4, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: John S. Toeppen