Patents Represented by Attorney Mike Jaro
  • Patent number: 7637901
    Abstract: A malleable cannula has a body with a proximal end and a distal end, the body having a wall defining a lumen extending from the proximal end to the distal end. A reinforcement member extends along the lumen, the reinforcement member having an interior side facing the lumen and an exterior side facing away from the lumen. A malleable member extends along a portion of the exterior side of the reinforcement member. The malleable member may be constructed of a tube with a wire slidably received within the tube and may include an anchor.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: December 29, 2009
    Assignee: Medtronic, Inc.
    Inventors: Robert J. Lawrence, Frederick A. Shorey, Donald R. Sandmore
  • Patent number: 7637943
    Abstract: A method for evaluating a valve annulus to determine a size of a prosthetic heart valve to be sewn to the valve annulus during heart valve replacement surgery. The prosthetic heart valve includes an annular extension having a first flexibility and a sewing ring having a second flexibility. A flexible sizer body is provided and includes an outer ring and an annular wall coupled to and extending from the outer ring. The annular wall has a flexibility substantially similar to the first flexibility of the annular extension of the prosthetic heart valve. The flexible sizer body is inserted into the valve annulus and a determination made as to fit and conformance. A prosthetic heart valve is selected based on the determination.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: December 29, 2009
    Assignee: Medtronic, Inc.
    Inventor: Jack D. Lemmon
  • Patent number: 7637944
    Abstract: An annuloplasty system including an annuloplasty prosthesis and a holder for the prosthesis.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: December 29, 2009
    Assignee: Medtronic, Inc.
    Inventors: Timothy R. Ryan, Joseph C. Morrow
  • Patent number: 7628780
    Abstract: Apparatus and methods for injecting biological agents into tissue. Devices are provided having elongate shafts and distal injection heads for driving needles into tissue and injecting medical agents into the tissue through the needles. A longitudinal force directed along the shaft can be translated to a needle driving force. Some devices provide controllably variable needle penetration depth. Devices include mechanical needle drivers utilizing four link pantographs, rack and pinions, and drive yokes for driving a first needle bearing body toward a second tissue contacting body. Other devices include inflatable members for driving and retracting needles. Still other devices include magnets for biasing the needles in extended and/or retracted positions. The invention includes minimally invasive methods for epicardially injecting cardiocyte precursor cells into infarct myocardial tissue.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: December 8, 2009
    Assignee: Medtronic, Inc.
    Inventors: Matthew D. Bonner, Paul T. Rothstein, Prasanga D. Hiniduma-Lokuge, James R. Keogh, Raymond W. Usher, Scott Eric Jahns, Victor T. Chen
  • Patent number: 7615015
    Abstract: A focused ultrasound ablation device and method includes an ultrasound emitting member having a plurality of individual ultrasound emitting elements arranged in an array. The ultrasound emitting elements are actuatable to emit ultrasound energy and focus the emitted ultrasound energy a predetermined distance from the ultrasound emitting member such that the ultrasound energy is focused within anatomical tissue adjacent which the ultrasound emitting member is positioned. The anatomical tissue is heated by the ultrasound energy focused therein to form an internal lesion within the tissue. The ultrasound emitting elements are selectively, independently actuatable, allowing selected ones of the ultrasound emitting elements to be actuated to emit ultrasound energy to obtain a lesion of desired or selected size and/or surface configuration in the tissue of a particular patient.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: November 10, 2009
    Assignee: Medtronic, Inc.
    Inventor: R. Glen Coleman
  • Patent number: 7611455
    Abstract: A method and apparatus for temporarily immobilizing a local area of tissue. In particular, the present invention provides a method and apparatus for temporarily immobilizing a local area of heart tissue to thereby permit surgery on a coronary vessel in that area without significant deterioration of the pumping function of the beating heart. The local area of heart tissue is immobilized to a degree sufficient to permit minimally invasive or micro-surgery on that area of the heart. The present invention features a suction device to accomplish the immobilization. The suction device is coupled to a source of negative pressure. The suction device has a series of suction ports on one surface. Suction through the device causes suction to be maintained at the ports. The device further is shaped to conform to the surface of the heart. Thus, when the device is placed on the surface of the heart and suction is created, the suction through the ports engages the surface of the heart.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: November 3, 2009
    Assignee: Medtronic, Inc.
    Inventors: Cornelius Borst, Hendricus J. Mansvelt Beck, Paul F. Grundeman, Erik W. L. Jansen
  • Patent number: 7611535
    Abstract: A fixation band for affixing a prosthetic heart valve to tissue having proximal and distal annular portions positionable relative to one another, the proximal and distal annular portions each having a proximal and distal sides, the proximal side of the distal annular portion and the distal side of the proximal annular portion being oriented toward one another, and a prosthetic heart valve being attachable to one of the distal side of the distal annular portion and the proximal side of the proximal annular portion; staples configured between the distal side of the proximal annular portion and the proximal side of the distal annular portion; and a compression device operative between the proximal and distal annular portions for selectively positioning the proximal and distal annular members toward one another for compressing the staples therebetween and deploying the staples into tissue so as to affix the prosthetic heart valve to tissue.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: November 3, 2009
    Assignee: Medtronic, Inc.
    Inventors: Steven B. Woolfson, Richard B. Streeter, Daniel C. Taylor, John R. Liddicoat
  • Patent number: 7578843
    Abstract: A heart valve prosthesis has a frame that includes at least one outwardly extending annular flange adjacent to a suturing ring and a band comprising an inwardly extending annular flange that is capable of engagement with the annular flange of the frame. A tortuous path is formed between the annular flange of the frame and the annular flange of the band that can engage and restrain a suture placed between them. One or more split portions or tab portions on the band are adapted to lock the band in engagement with the flange of the frame. Such a device can be used to more easily replace a heart valve by advancing a sutures through a suturing ring on the valve and the valvular rim such that they are brought outward of the flange extending from the frame and then advancing the band over the valve and over the sutures at a proximal, outflow end of the valve until the band engages the flange and captures the sutures between the band and the flange.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: August 25, 2009
    Assignee: Medtronic, Inc.
    Inventor: Mark C. S. Shu
  • Patent number: 7578828
    Abstract: Methods and devices for placing a conduit in fluid communication with a target vessel and a source of blood, such as the aorta or a heart chamber. The device may be actuated using one hand to place the conduit. The invention allows air in the conduit to be removed prior to placement of the conduit. The invention deploys the conduit in the target vessel by moving a sheath in a distal direction and then in a proximal direction. A conduit is provided with a reinforcing member to prevent kinking of the conduit, and a structure for preventing blockage of the conduit by tissue. A vessel coupling may be used to secure a conduit to a target vessel so as to preserve native blood flow through the vessel, and the conduit may be placed in fluid communication with a target vessel via a laparoscopic or endoscopic procedure.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: August 25, 2009
    Assignee: Medtronic, Inc.
    Inventors: Darin C. Gittings, Alan R. Rapacki, Dean F. Carson, David H. Cole, Keke Lepulu, Adam Sharkawy, Gilbert S. Laroya, Wally S. Buch
  • Patent number: 7566334
    Abstract: System, device and method for ablating target tissue adjacent pulmonary veins of a patient through an incision. An ablation device can include a hinge including a cam assembly, a moving arm, a floating jaw, and a lower jaw. Fingers can engage the floating jaw to hold the floating jaw in a first position with respect to the moving arm. Some embodiments of the invention can provide an ablation device including a central support, an upper four-bar linkage coupled to the central support, an upper jaw coupled to the upper linkage, a lower four-bar linkage coupled to the central support, and a lower jaw coupled to the lower linkage. Some embodiments of the invention can provide an ablation device having an upper jaw including a first cannula connection and a lower jaw including a second cannula connection. The system can include a first catheter coupled to the first cannula connection and a second catheter coupled to the second cannula connection.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: July 28, 2009
    Assignee: Medtronic, Inc.
    Inventors: Steven C. Christian, Paul T. Rothstein, Tom P. Daigle
  • Patent number: 7547313
    Abstract: A tissue connector assembly having a flexible member and a surgical clip releasably coupled to the flexible member. A needle may be secured to one end portion of the flexible member with the surgical clip coupled to the other end portion of the flexible member. A locking device may be used to couple the flexible member to the surgical clip. A method for connecting tissues is also disclosed. The method includes drawing tissue portions together with a clip assembly and securing the tissue portions together with the clip assembly.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: June 16, 2009
    Assignee: Medtronic, Inc.
    Inventors: Barry Gardiner, Laurent Schaller, Isidro Matias Gandionco, John Nguyen
  • Patent number: 7544206
    Abstract: A method and apparatus for delivering a device to a given location within a heart, the method and apparatus being adapted for: passing a first catheter through the left atrium of the heart, through the mitral valve and into the left ventricle, and passing a second catheter through the aorta toward the heart, one or the other of the first catheter and the second catheter, with the device attached thereto, forming a device-carrying assembly for engagement with the remaining catheter; causing the device-carrying assembly and the remaining catheter to engage one another so as to form a connection therebetween; and retracting one of the device-carrying assembly and the remaining catheter in a direction opposite to the other of the device-carrying assembly and the remaining catheter so as to position the device relative to the given location within the heart.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: June 9, 2009
    Assignee: Medtronic, Inc.
    Inventor: William E. Cohn
  • Patent number: 7507235
    Abstract: This invention provides a system and method for positioning, manipulating, holding, grasping, immobilizing and/or stabilizing a heart including one or more tissue-engaging devices, one or more suction sources, one or more fluid sources, one or more energy sources, one or more sensors and one or more processors. The system and method may include an indifferent electrode, a drug delivery device and an illumination device. The system's tissue-engaging device may comprise a tissue-engaging head, a support apparatus and a clamping mechanism for attaching the tissue-engaging device to a stable object. The system may be used during various medical procedures including the deployment of an anastomotic device, intermittently stopping and starting of the heart, ablation of cardiac tissues and the placement of cardiac leads.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: March 24, 2009
    Assignee: Medtronic, Inc.
    Inventors: James R. Keogh, Scott E Jahns, Michael A. Colson, Gary W. Guenst, Christopher Olig, Paul A. Pignato, Karen Montpetit, Thomas Daigle, Douglas H. Gubbin, William G. O'Neill, Katherine Jolly
  • Patent number: 7503929
    Abstract: A prosthetic heart valve system including a prosthetic heart valve and a deflection device. The deflection device includes a line and a connector assembly including a tensioning component. The line interconnects and passes through free ends of stent posts associated with the heart valve, and is further connected to the tensioning component. The tensioning component is transitionable to a tensioning state in which the line is tensioned to inwardly deflect the stent posts. In this regard, the tensioning component is self-locking relative to the line in the tensioning state, and an entirety of the line extending distal the tensioning device does not extend beyond a stent portion of the heart valve opposite the stent posts. In a preferred embodiment, a holder body is further included, coupled to the heart valve apart from the deflection device.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: March 17, 2009
    Assignee: Medtronic, Inc.
    Inventors: Keith M. Johnson, Jack D. Lemmon, Joseph C. Morrow, Timothy R. Ryan
  • Patent number: 7503930
    Abstract: Implantable prosthetic valve systems and methods for implanting them are provided. Magnets are employed within one or more components of the valve systems to facilitate anchoring of the prosthetic valve at a target implant site, delivery of the prosthetic valve to the target implant site or both.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: March 17, 2009
    Assignee: Medtronic, Inc.
    Inventors: Adam Sharkawy, Mark Foley, Darin Gittings, David Cole, Sam Crews
  • Patent number: 7497857
    Abstract: Methods and devices for forming a lesion in a target tissue having a cavity within. A first RF electrode and a second RF electrode can be coupled to opposite poles of an RF current source. The second electrode can be inserted into the tissue cavity and expanded to contact the target tissue from within. The first electrode can be externally disposed against the target tissue while applying RF current between the first and second electrodes to ablate the target tissue. Some methods are directed to ablating tribiculated atrial wall tissue to treat atrial fibrillation. The second electrode can contact the tribiculated tissue directly from within to provide a direct path between the two electrodes. In some methods, the second electrode is inserted through an incision made to remove an atrial appendage. The methods can provide deeper, narrower lesions relative to those made using remote, indifferent electrodes.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: March 3, 2009
    Assignee: Medtronic, Inc.
    Inventor: Roderick E. Briscoe
  • Patent number: 7494460
    Abstract: Suction-assisted tissue-engaging devices, systems, and methods are disclosed that can be employed through minimal surgical incisions to engage tissue during a medical procedure through application of suction to the tissue through a suction member applied to the tissue. A shaft is introduced into a body cavity through a first incision, and a suction head is attached to the shaft via a second incision. The suction head is applied against the tissue by manipulation of the shaft and suction is applied to engage the tissue while the medical procedure is performed through the second incision. A system coupled to the shaft and a fixed reference point stabilizes the shaft and suction head. When the medical procedure is completed, suction is discontinued, the suction head is detached from the shaft and withdrawn from the body cavity through the second incision, and the shaft is retracted through the first incision.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: February 24, 2009
    Assignee: Medtronic, Inc.
    Inventors: Philip J. Haarstad, Christopher P. Olig, Paul T. Rothstein, Michael J. Hobday, William J. Steinberg, David J. S. Kim, Thomas P. Daigle, Ann M. Thomas, Brian J. Ross, Steven C. Christian, Robert H. Reetz, Douglas H. Gubbin
  • Patent number: 7493154
    Abstract: Methods and apparatus employed to locate body vessels and occlusions in body vessels finding particular utility in cardiac surgery, particularly minimally invasive cardiac surgery to locate cardiac arteries and occlusions in cardiac arteries are disclosed. An elongated vessel lumen probe incorporating a lumen probe element at or near the elongated vessel lumen probe distal end is advanced into the vessel lumen. A vessel surface probe manipulated by the surgeon and having a surface probe element sensor is employed to detect the lumen probe element and to follow the progress of the vessel lumen probe element as it approaches and is advanced through or is blocked by an occlusion. In the location of a coronary artery, the surface probe element sensor is moved about against the epicardium over the suspected location of the artery of interest until a surface probe element sensor of the present invention at the surface probe distal end interacts with the lumen probe element of the vessel lumen probe.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: February 17, 2009
    Assignee: Medtronic, Inc.
    Inventors: Matthew D. Bonner, Cynthia T. Clague, Scott E. Jahns, James R. Keogh
  • Patent number: 7476247
    Abstract: A valve repair system, preferably including an annuloplasty prosthesis and a holder for the prosthesis. The holder includes a first component having a central opening, a circumferential surface and an outwardly extending member. The annuloplasty prosthesis is located adjacent to the circumferential surface, above the outwardly extending member. The holder further includes a second component movable upwardly relative to the first holder component and includes a rigid penetrating member extending downward from the second component into the prosthesis, holding it adjacent the circumferential surface. The holder also includes a suturing guide for assisting a physician in valve repair surgery, which may be a cuttable suture extending across the central opening along a path approximating a desired line of leaflet coaption. The cuttable suture may additionally secure the first and second components to one another.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: January 13, 2009
    Assignee: Medtronic, Inc.
    Inventors: Timothy R Ryan, Joseph C. Morrow, Carlos G. Duran
  • Patent number: 7470272
    Abstract: An electrosurgery medical device is enhanced with unique solution-assistance, and comprises, in combination, co-operating device jaws including jaw portions for manipulating tissue, and a plurality of solution infusion openings defined and spaced along each of the jaw portions, for receiving electrolytic solution and infusing the solution onto and into tissue to be manipulated, along said jaw portions. As preferred, the device further comprises at least one, and most preferably, many, longitudinal groove(s) along at least one and most preferably, both, of the jaw portions, with the solution infusion openings located in the groove or grooves. The solution is energized with RF energy and contributes to the functions and beneficial effects of the instrument. The solution exits the openings in the grooves at sufficient flow rates to separate substantially all the operative surfaces of the device from tissue, thereby substantially completely preventing adherence between the operative surfaces and tissue.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: December 30, 2008
    Assignee: Medtronic, Inc.
    Inventors: Peter M. J. Mulier, Michael F. Hoey