Abstract: A Hall element is provided which has a high sensitivity and contributes to an improvement in S/N ratio per current by using a low-concentration n-well within a suitable range. The Hall element includes a p-type semiconductor substrate layer of p-type silicon, and an n-type impurity region located in a surface of the p-type semiconductor substrate layer, the n-type impurity region functioning as a magnetic sensing part. A p-type impurity region is located in a surface of the n-type impurity region, and n-type regions are located laterally of the p-type impurity region. A p-type substrate region having a resistivity equal to that of the p-type semiconductor substrate layer is located to extend around the n-type impurity region. An impurity concentration N in the n-type impurity region functioning as the magnetic sensing part is preferably from 1×1016 to 3×1016(atoms/cm3) and a distribution depth of the impurity concentration is preferably from 3.0 ?m to 5.0 ?m.
Abstract: The present invention provides methods for detecting changes in tryptophan concentrations in a cell and methods for identifying agents that modulate cellular tryptophan concentrations. In particular, the present invention provides methods for detecting cellular exchange between tryptophan and kynurenine, and methods for identifying agents that modulate this exchange. The present invention also provides methods for treating a disease associated with immunosuppression in a subject in need thereof. In particular, the present invention is directed toward a method of treating a disease associated with immunosuppression comprising contacting the disease with an agent that modulates cellular Trp/kynurenine exchange. Furthermore, the present invention provides methods for identifying an agent that modulates an immunosuppression.
Type:
Grant
Filed:
April 28, 2011
Date of Patent:
December 6, 2011
Assignees:
Carnegie Institution of Washington, The Board of Trustees of the Leland Stanford Junior University
Inventors:
Thijs Kaper, Michael Platten, Lawrence Steinman, Wolf Frommer
Abstract: Compositions are described comprising at least partially defatted meal from a plant source containing protein-bound tryptophan, preferably squash seeds, and, optionally, a carbohydrate source provided in an amount capable of facilitating transport of in vivo generated tryptophan across the blood brain barrier. Also described are dietary supplements, foods and beverages comprising the composition of the invention to reduce anxiety.