Abstract: The present invention relates to monoclonal antibodies that bind or neutralize Hendra or Nipah virus. The invention provides such antibodies, fragments of such antibodies retaining Hendra or Nipah virus-binding ability, fully human antibodies retaining Hendra or Nipah virus-binding ability, and pharmaceutical compositions including such antibodies. The invention further provides for isolated nucleic acids encoding the antibodies of the invention and host cells transformed therewith. Additionally, the invention provides for prophylactic, therapeutic, and diagnostic methods employing the antibodies and nucleic acids of the invention.
Type:
Grant
Filed:
August 1, 2011
Date of Patent:
November 20, 2012
Assignees:
The Henry Jackson Foundation for the Advancement of Military Medicine, Inc., The United States of America, as Represented by the Secretary of the Department of Health and Human Services National Institutes of Health, Office of Technology Transfer
Inventors:
Dimiter S. Dimitrov, Zhongyu Zhu, Christopher C. Broder
Abstract: A thin film transistor substrate structure for using a horizontal electric field includes a substrate; a gate line and a first common line formed on the substrate parallel to each other from a first conductive layer; a gate insulating film formed on the substrate, the gate line, and the first common line; a data line formed from a second conductive layer on the gate insulating film crossing the gate line and the common line with the gate insulating film therebetween to define a pixel area; a thin film transistor connected to the gate line and the data line; a protective film covering the data line and the thin film transistor; a common electrode formed from a third conductive layer connected to the common line through a hole passing through the protective film and the gate insulating film; and a pixel electrode formed from the second conductive layer connected to the thin film transistor to define a horizontal electric field between the pixel electrode and the common electrode.
Type:
Grant
Filed:
October 10, 2006
Date of Patent:
November 4, 2008
Assignee:
LG Display Co., Ltd.
Inventors:
Soon Sung Yoo, Oh Nam Kwon, Heung Lyul Cho
Abstract: Chiral organometallic compounds are provided which comprise certain non-symmetrically substituted cyclopentadiene complexed to a transition metal. The cyclopentadiene has a second coordinating group which also complexes the transition metal and is attached to the cyclopentadiene by means of a chiral connecting chain. Preferred transition metals include rhodium, ruthenium, iridium, cobalt, iron, manganese, chromium, tungsten, molybdenum, nickel, palladium, or platinum. These chiral organometallic compounds find use in asymmetric synthesis to produce chiral compounds.
Abstract: A collection vessel 124 has a shutter 138 for opening and closing collection ports 136. A rotation shaft 140 of the shutter 138 is provided with an opening/closing piece 144. The opening/closing piece 144 abuts a protrusion on an image formation apparatus main unit and opens the shutter 138 largely so that a discharge section inserted into the collection port 136 does not abut. The collection port 136 is made a long hole so as to allow the discharge section to move. Further, the shutter 138 is formed integrally with a plurality of door parts 142 so as to open or close the collection ports 136 by one operation.
Abstract: A modular semiconductor die package is provided. The semiconductor die package includes a polymer base for mounting at least one semiconductor die. A polymer cap is operatively secured over the base forming a cavity. The cap includes a light transmissive member operatively positioned to allow light of predetermined wavelengths to pass between at least a portion of the surface of the die and the light transmissive member. A plurality of conductive leads extend through the base to form connections with the semiconductor die(s) positioned in the cavity.
Type:
Grant
Filed:
February 25, 2002
Date of Patent:
March 2, 2004
Assignee:
Silicon Bandwidth, Inc.
Inventors:
Stanford W. Crane, Jr., Jennifer Colegrove, Zsolt Horvath, Myoung-soo Jeon, Joshua Nickel, Lei-Ming Yang