Patents Represented by Attorney Mossman, Kumar & Tyler, PC
  • Patent number: 8278251
    Abstract: Water flood materials may contain an effective amount of a nano-sized particulate additive to inhibit or control the movement of fines within a subterranean formation during a water flood secondary recovery operation. The particulate additive may be an alkaline earth metal oxide, alkaline earth metal hydroxide, alkali metal oxide, alkali metal hydroxide, transition metal oxide, transition metal hydroxide, post-transition metal oxide, post-transition metal hydroxide, piezoelectric crystal, and/or pyroelectric crystal. The particle size of the magnesium oxide or other agent may be nanometer scale, which scale may provide unique particle charges that help control and stabilize the fines, e.g. clays.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: October 2, 2012
    Assignee: Baker Hughes Incorporated
    Inventor: Tianping Huang
  • Patent number: 8278252
    Abstract: An aqueous, viscoelastic fluid gelled with a viscoelastic surfactant (VES) is stabilized and improved with an effective amount of an alkaline earth metal oxide, alkaline earth metal hydroxide, alkali metal oxides, alkali metal hydroxides, transition metal oxides, transition metal hydroxides, post-transition metal oxides, and post-transition metal hydroxides. These fluids are more stable and have a reduced or no tendency to precipitate, particularly at elevated temperatures. The additives may reduce the amount of VES required to maintain a given viscosity. These stabilized, enhanced, aqueous viscoelastic fluids may be used as treatment fluids for subterranean hydrocarbon formations, such as in hydraulic fracturing. The particle size of the magnesium oxide or other agent may be nanometer scale, which scale may provide unique particle charges that use chemisorption, crosslinking and/or other chemistries to associate and stabilize the VES fluids.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: October 2, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: James B. Crews, Tianping Huang, James H. Treadway, John R. Willingham
  • Patent number: 8280638
    Abstract: A multi-station gravity and magnetic survey is carried out in a borehole. The data from the survey are processed to estimate the inclination and azimuth of the borehole. The drill collar relative permeability is estimated, and the estimated drill collar permeability is then used to remove the effects of induced magnetization of the drill collar on the magnetic measurements.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: October 2, 2012
    Assignee: Baker Hughes Incorporated
    Inventor: Andrew G. Brooks
  • Patent number: 8269162
    Abstract: Measurements made by a wireline-conveyed pulsed neutron tool with two or more gamma ray detectors are used to provide a mineralogical and/or elemental image of the formation. This may be used in reservoir navigation and in furthering the understanding of the geology of the prospect.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: September 18, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Andrew D. Kirkwood, Philip L. Kurkoski
  • Patent number: 8262749
    Abstract: Reacting an alkylene carbonate, such as ethylene carbonate, with dimer acid in the presence of a catalyst, such as a tertiary amine catalyst, gives a dimer acid diester having essentially no sulfur, and thus may be added to ultra-low sulfur diesel fuel downstream of a refinery. The diester enhances the lubricity properties of hydrocarbon fuels, increases their service life and fuel efficiency. The manufacturing process time may be decreased significantly compared with a process using ethylene glycol instead of ethylene carbonate, and much less ethylene glycol by-product results.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: September 11, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Viet Q. Hoang, Philip L. Leung, Gordon T. Rivers
  • Patent number: 8261873
    Abstract: An apparatus and method for providing a downhole acoustic source is disclosed. The acoustic source includes a piston configured to oscillate in an axial direction of the acoustic source and produce an acoustic signal in a medium in contact with an exterior surface of the piston, and an elastomer disposed on an interior side of the piston, an acoustic impedance of the elastomer selected to match an acoustic impedance of the piston. A permanent magnet is configured to provide a permanent magnetic field oriented in the axial direction, and a coil disposed on an interior side of the piston produces an alternating magnetic field in the region of the permanent magnetic field. The elastomer may be, for example, a silicon rubber, a silicone jelly, and a silicone oil. A plurality of acoustic sources may be arranged to produce an acoustic dipole configuration or an acoustic quadrupole configuration.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: September 11, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Valeriy Richenstev, Vladimir Dubinsky, Douglas J. Patterson, Jonathan F. Hook, David H. Lilly
  • Patent number: 8245771
    Abstract: A demagnetizing sub having an electromagnet or a rotating magnet is used for demagnetizing magnetized material in a wellbore. By gradually reducing the magnetic field, the magnetized material within the borehole is demagnetized.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: August 21, 2012
    Assignee: Baker Hughes Incorporated
    Inventor: Thomas Kruspe
  • Patent number: 8235120
    Abstract: Mesophase fluids may be pre-formed or formed in situ and may be used downhole for various treatments including, but not limited to, cleaning up and removing non-polar materials from reservoir production zones, removing wellbore damage, releasing stuck pipe, components in spacers and pills and the like in oil and gas wells. These treatments involve solubilization of the non-polar material into the emulsion when the treatment fluid contacts non-polar materials. These mesophase fluids use extended chain surfactants having propoxylated/ethoxylated spacer arms. The extended chain surfactants are intramolecular mixtures containing hydrophilic and lipophilic portions. They attain high solubilization in the mesophase fluids (e.g. single phase microemulsions), are in some instances insensitive to temperature and are useful for a wide variety of oil types.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: August 7, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Lirio Quintero, David E. Clark, Jean-Louis Salager, Ana Forgiarini
  • Patent number: 8238195
    Abstract: An apparatus and a method for processing of three components, 3-Dimensions seismic (3-C, 3-D) data acquired by down-hole receivers and surface seismic sources. Automatic velocity analysis is used to identify the velocities of dominant events in a VSP panel. Different wave-types (downgoing P, downgoing PS, upcoming PS and upcoming PP) are identified and sequentially removed.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: August 7, 2012
    Assignee: Baker Hughes Incorporated
    Inventor: Emanouil Blias
  • Patent number: 8237445
    Abstract: The present disclosure provides a method and apparatus for performing resistivity measurements of a borehole wall using a transverse octupole sensor. The sensor may be a resistivity sensor. Higher resolution is obtained with an octupole sensor than with lower-order-pole sensors. For the resistivity case, the ratio of dual-frequency measurements has reduced sensitivity to standoff.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: August 7, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Alexandre N. Bespalov, Sheng Fang
  • Patent number: 8237446
    Abstract: An imaging tool made includes a pad whose curvature is chosen based on the expected range of borehole radius and the pad size so as to maintain the maximum standoff below a desired value. The curvature may be adjusted using fasteners.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: August 7, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Stanislav W. Forgang, Randy Gold, Peter J. Nolan, Carlos A. Yanzig
  • Patent number: 8239172
    Abstract: A transient electromagnetic signal is recorded in an earth formation in the presence of a pipe having a finite conductivity. A portion of the signal dominated by the pipe signal is analyzed to determine a functional representation, extrapolated back to a time interval where the formation signal is present and subtracted from the recorded signal to provide a corrected signal.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: August 7, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Arcady Reiderman, Gregory B. Itskovich
  • Patent number: 8236864
    Abstract: Fluids viscosified with viscoelastic surfactants (VESs) may have their viscosities affected (increased or reduced, e.g. gels broken) by the indirect or direct action of a composition that contains at least one fatty acid that has been affected, modified or reacted with an alkali metal base, an alkali earth metal base, ammonium base, and/or organic base compound, optionally with an alkali metal halide salt, an alkali earth metal halide salt, and/or an ammonium halide salt. The composition containing the resulting saponification product is believed to either act as a co-surfactant with the VES itself to increase viscosity and/or possibly by disaggregating or otherwise affecting the micellar structure of the VES-gelled fluid. In a specific, non-limiting instance, a brine fluid gelled with an amine oxide surfactant may have its viscosity broken with a composition containing naturally-occurring fatty acids in canola oil or corn oil affected with CaOH, MgOH, NaOH and the like.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: August 7, 2012
    Assignee: Baker Hughes Incorporated
    Inventor: James B. Crews
  • Patent number: 8230923
    Abstract: The migration of coal fines within a bed is reduced, inhibited or constrained by contacting the fines with nanoparticles, such as magnesium oxide crystals having an average particle size of about 30 nm. These nanoparticles may coat a proppant during the fracturing of a subterranean formation to produce methane from a coal bed therein. The nanoparticles may also treat a proppant pack in a fractured coal bed. The nanoparticles cause the coal fines to thus bind to or associate with the proppants. Thus, most of the coal fines entering fractures away from the near-wellbore region will be restrained or controlled near their origin or source and the production of methane at a desired level will be maintained much longer than a similar situation than where the nanoparticles are not used.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: July 31, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Tianping Huang, James B. Crews, Allen D. Gabrysch, Rick M. Jeffrey
  • Patent number: 8226830
    Abstract: Nanoparticle-treated particle packs, such as sand beds, may effectively filter and purify liquids such as waste water. When tiny contaminant particles in waste water flow through the particle pack, the nanoparticles will capture and hold the tiny contaminant particles within the pack due to the nanoparticles' surface forces, including, but not necessarily limited to van der Waals and electrostatic forces. Coating agents such as alcohols, glycols, polyols, vegetable oil, and mineral oils may help apply the nanoparticles to the particle surfaces in the filter beds or packs.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: July 24, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Tianping Huang, James B. Crews
  • Patent number: 8210263
    Abstract: Single-phase microemulsions (SPMEs) and in situ-formed microemulsions in water-wetting pills may be used to reverse the wettability of subterranean rock previously drilled with an oil-based mud or synthetic-based mud before pumping a high fluid loss squeeze pill or crosslink pill or other water-based pill. This wettability reversal occurs by solubilization of the non-polar material into the microemulsion when the water-wetting pill contacts the non-polar material. An in situ microemulsion may be formed when one or more surfactant and a polar phase (e.g. water or brine), and eventually some amount of organic phase, contacts the reservoir formation and reverses the wettability encountered in the porous media. The microemulsions are effective for reversing the wettability that occurs from non-polar materials which include, but are not necessarily limited to, oil-based mud, synthetic-based mud, paraffins, asphaltenes, emulsions, slugs, and combinations thereof.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: July 3, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Lirio Quintero, David E. Clark, Thomas A. Jones
  • Patent number: 8203344
    Abstract: An apparatus, method and computer-readable medium for evaluating an earth formation are disclosed. The apparatus includes at least one coil on a logging tool conveyed in a borehole in the earth formation. Passage of a current through the coil induces an electrical current in the earth formation. At least two electrodes associated with the logging tool and in proximity to a wall of the borehole have a potential difference in response to the induced electrical current that is indicative of a property of the earth formation. The at least one coil may be mounted on a mandrel of a downhole assembly. The electrodes may be positioned on a first pad extendable from a mandrel of the downhole assembly.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: June 19, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Randy Gold, Rashid W. Khokhar, Alexandre N. Bespalov, Leonty A. Tabarovsky, Gregory B. Itskovich
  • Patent number: 8196659
    Abstract: An aqueous, viscoelastic fluid gelled with a viscosifier, e.g. a viscoelastic surfactant, is stabilized and improved with an effective amount of a particulate additive such as alkaline earth metal oxides, alkaline earth metal hydroxides, transition metal oxides, transition metal hydroxides, post-transition metal oxides, and post-transition metal hydroxides. These fluids are more stable and have a reduced or no tendency to precipitate, particularly at elevated temperatures, and may also help control fluid loss. These particulate additives have unique particle charges that use chemisorption, “crosslinking” and/or other chemistries to associate and stabilize the VES fluids, and also help trap or fixate formation fines when placed in a gravel pack or a proppant pack in a fracture. Some of these effects may be more pronounced the smaller the size of the particulate additive.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: June 12, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Tianping Huang, James B. Crews, John Robert Willingham
  • Patent number: 8195399
    Abstract: The grain size distribution of a pore-scale geometric model of a clastic earth formation are adjusted so that the NMR relaxation time distribution output of the model matches a measured NMR distribution, and an acoustic velocity output of the model matches a measured acoustic velocity (compressional and/or shear). Fluid drainage and imbibing can be simulated. Additional properties of the earth formation are predicted using the pore-scale model. The additional properties may be based on additional measurements of properties of a fluid in the formation.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: June 5, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Mikhail N. Gladkikh, Songhua Chen, Jiansheng Chen
  • Patent number: RE43666
    Abstract: A multi component seismic sensor which utilises orthogonal accelerometers to determine its orientation. The accelerometers may be used to measure seismic signals directly, or the system may include geophones for this purpose.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: September 18, 2012
    Assignee: Concept Systems Limited
    Inventor: Gordon Stephen