Patents Represented by Attorney Nantero Inc.
  • Patent number: 8351239
    Abstract: A dynamic sense current supply circuit and an associated method for rapidly characterizing a resistive memory array is disclosed. In one embodiment, the disclosed circuit comprises a first and second dynamically programmable current mirror sub-circuit. Responsive to a bank of control signals, each dynamically programmable current mirror sub-circuit provides a dynamically adjustable current scaling factor. These scaling factors are used to scale a supplied reference current to generate a plurality of sense currents which can be used within a plurality of read operations on a resistive memory array. A digital circuit is also provided to sense and store the result of each read operation.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: January 8, 2013
    Assignee: Nantero Inc.
    Inventors: Young W. Kim, Glen Rosendale
  • Patent number: 8343373
    Abstract: A method of forming an aligned connection between a nanotube layer and an etched feature is disclosed. An etched feature is formed having a top and a side and optionally a notched feature at the top. A patterned nanotube layer is formed such that the nanotube layer contacts portions of the side and overlaps a portion of the top of the etched feature. The nanotube layer is then covered with an insulating layer. Then a top portion of the insulating layer is removed to expose a top portion of the etched feature.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: January 1, 2013
    Assignee: Nantero Inc.
    Inventor: Colin D. Yates
  • Patent number: 8319205
    Abstract: Field programmable device (FPD) chips with large logic capacity and field programmability that are in-circuit programmable are described. FPDs use small versatile nonvolatile nanotube switches that enable efficient architectures for dense low power and high performance chip implementations and are compatible with low cost CMOS technologies and simple to integrate.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: November 27, 2012
    Assignee: Nantero Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, H. M. Manning
  • Patent number: 8310015
    Abstract: Sensor platforms and methods of making them are described, and include platforms having horizontally oriented sensor elements comprising nanotubes or other nanostructures, such as nanowires. Under certain embodiments, a sensor element has an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes, and, under certain embodiments, it comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing a collection of nanotubes on the structure; defining a pattern within the nanotube collection; removing part of the collection so that a patterned collection remains to form a sensor element; and providing circuitry to electrically sense the sensor's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: November 13, 2012
    Assignee: Nantero Inc.
    Inventors: Brent M. Segal, Thomas Rueckes, Bernhard Vogeli, Darren K. Brock, Venkatachalam C. Jaiprakash, Claude L. Bertin
  • Patent number: 8217490
    Abstract: Under one aspect, a non-volatile nanotube switch includes a first terminal; a nanotube block including a multilayer nanotube fabric, at least a portion of which is positioned over and in contact with at least a portion of the first terminal; a second terminal, at least a portion of which is positioned over and in contact with at least a portion of the nanotube block, wherein the nanotube block is constructed and arranged to prevent direct physical and electrical contact between the first and second terminals; and control circuitry capable of applying electrical stimulus to the first and second terminals. The nanotube block can switch between a plurality of electronic states in response to a plurality of electrical stimuli applied by the control circuitry to the first and second terminals. For each different electronic state, the nanotube block provides an electrical pathway of different resistance between the first and second terminals.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: July 10, 2012
    Assignee: Nantero Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, X. M. Henry Huang, Ramesh Sivarajan, Eliodor G. Ghenciu, Steven L. Konsek, Mitchell Meinhold, Jonathan W. Ward, Darren K. Brock
  • Patent number: 8187502
    Abstract: Certain spin-coatable liquids and application techniques are described, which can be used to form nanotube films or fabrics of controlled properties. A spin-coatable liquid for formation of a nanotube film includes a liquid medium containing a controlled concentration of purified nanotubes, wherein the controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity, and wherein the spin-coatable liquid comprises less than 1×1018 atoms/cm3 of metal impurities. The spin-coatable liquid is substantially free of particle impurities having a diameter of greater than about 500 nm.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: May 29, 2012
    Assignee: Nantero Inc.
    Inventors: Rahul Sen, Ramesh Sivarajan, Thomas Rueckes, Brent M. Segal
  • Patent number: 8183665
    Abstract: A high-density memory array. A plurality of word lines and a plurality of bit lines are arranged to access a plurality of memory cells. Each memory cell includes a first conductive terminal and an article in physical and electrical contact with the first conductive terminal, the article comprising a plurality of nanoscopic particles. A second conductive terminal is in physical and electrical contact with the article. Select circuitry is arranged in electrical communication with a bit line of the plurality of bit lines and one of the first and second conductive terminals. The article has a physical dimension that defines a spacing between the first and second conductive terminals such that the nanotube article is interposed between the first and second conducive terminals. A logical state of each memory cell is selectable by activation only of the bit line and the word line connected to that memory cell.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: May 22, 2012
    Assignee: Nantero Inc.
    Inventors: Claude L. Bertin, Eliodor G. Ghenciu, Thomas Rueckes, H. Montgomery Manning
  • Patent number: 8147722
    Abstract: Certain spin-coatable liquids and application techniques are described, which can be used to form nanotube films or fabrics of controlled properties. A spin-coatable liquid for formation of a nanotube film includes a liquid medium containing a controlled concentration of purified nanotubes, wherein the controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity, and wherein the spin-coatable liquid comprises less than 1×1018 atoms/cm3 of metal impurities. The spin-coatable liquid is substantially free of particle impurities having a diameter of greater than about 500 nm.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: April 3, 2012
    Assignee: Nantero Inc.
    Inventors: Rahul Sen, Ramesh Sivarajan, Thomas Rueckes, Brent M. Segal
  • Patent number: 8134220
    Abstract: Nanotube switching devices having nanotube bridges are disclosed. Two-terminal nanotube switches include conductive terminals extending up from a substrate and defining a void in the substrate. Nantoube articles are suspended over the void or form a bottom surface of a void. The nanotube articles are arranged to permanently contact at least a portion of the conductive terminals. An electrical stimulus circuit in communication with the conductive terminals is used to generate and apply selected waveforms to induce a change in resistance of the device between relatively high and low resistance values. Relatively high and relatively low resistance values correspond to states of the device. A single conductive terminal and a interconnect line may be used. The nanotube article may comprise a patterned region of nanotube fabric, having an active region with a relatively high or relatively low resistance value. Methods of making each device are disclosed.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: March 13, 2012
    Assignee: Nantero Inc.
    Inventors: H. Montgomery Manning, Thomas Rueckes, Jonathan W. Ward, Brent M. Segal
  • Patent number: 8128993
    Abstract: Methods for forming anisotropic nanotube fabrics are disclosed. In one aspect, a nanotube application solution is rendered into a nematic state prior to its application over a substrate. In another aspect, a pump and narrow nozzle assembly are employed to realize a flow induced alignment of a plurality of individual nanotube elements as they are deposited onto a substrate element. In another aspect, nanotube adhesion promoter materials are used to form a patterned nanotube application layer, providing narrow channels over which nanotube elements will self align during an application process. Specific dip coating processes which are well suited for aiding in the creation of anisotropic nanotube fabrics are also disclosed.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: March 6, 2012
    Assignee: Nantero Inc.
    Inventors: Thomas Rueckes, Ramesh Sivarajan, Rahul Sen