Patents Represented by Attorney, Agent or Law Firm Noreen C. Johnson
  • Patent number: 6790934
    Abstract: Aromatic polyethers are prepared by displacement polymerization reaction in the presence of a water-immiscible solvent with boiling point at atmospheric pressure of greater than 110° C. and a density ratio to water of greater than 1.1:1 at 20-25° C. The polyethers are purified by processes comprising aqueous extraction, or filtration, or a combination thereof.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: September 14, 2004
    Assignee: General Electric Company
    Inventors: Norman Enoch Johnson, Raul Eduardo Ayala, Thomas Joseph Fyvie, Amy Rene Freshour, David Winfield Woodruff, Peter David Phelps, Ganesh Kailasam, Paul Edward Howson, Elliott West Shanklin, Lioba Maria Kloppenburg, David Bruce Hall, Pradeep Jeevaji Nadkarni, Daniel Joseph Brunelle
  • Patent number: 6716505
    Abstract: This disclosure relates to a data storage medium, and in particular to a data storage medium comprising at least one high modulus layer used to control the overall degree of flatness in the storage medium.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: April 6, 2004
    Assignee: General Electric Company
    Inventors: Irene Dris, Grant Hay, Steven Frederick Hubbard, Hendrik Theodorus Van De Grampel, Geert Boven
  • Patent number: 6689199
    Abstract: A method of introducing small amounts of a refractory element into a vapor deposition coating. A second material (30), containing at least two elements which are desired to be deposited as a coating on a base material, has placed over it a first material (20) substantially comprising such two elements and a refractory element. The first material (20) is adapted to permit transport of the at least two elements in the second material (30) through the first material (20) when the first (20) and second (30) material are in a molten state and in touching contact with the other so as to permit evaporation of the two elements and the refractory element from an exposed surface. Heat is supplied to the first (20) and second (30) materials to permit evaporation of the at least two elements of second material (30) and the refractory element in the first material (20), and the resulting vapors are condensed as a deposit on a base material (50).
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: February 10, 2004
    Assignee: General Electric Company
    Inventors: Reed Roeder Corderman, Melvin Robert Jackson, Richard Arthur Nardi, Jr.
  • Patent number: 6619294
    Abstract: A composition and method for making a silicone composition is provided which comprises at least one polysiloxane or silicone resin containing at least one linker, and at least one molecular hook.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: September 16, 2003
    Assignee: General Electric Company
    Inventors: Matthew David Butts, Susan Adams Nye, Christopher Michael Byrne
  • Patent number: 6613824
    Abstract: Disclosed are flame retardant resinous compositions comprising (i) at least one aromatic polycarbonate; (ii) at least one of a second polymer having structural units derived from one or more monomers selected from the group consisting of vinyl aromatic monomers, monoethylenically unsaturated nitrile monomers, and C1-C12 alkyl (meth)acrylate monomers; (iii) at least one rubber modified graft copolymer; (iv) at least one polymeric or non-polymeric organic phosphorus species; (v) at least one antidrip agent; and (vi) at least one perfluoroalkanesulfonate salt present in an amount in a range between about 0.01 wt % and about 0.25 wt %, based on the weight of the entire composition. Also disclosed are methods for making said compositions.
    Type: Grant
    Filed: November 12, 2001
    Date of Patent: September 2, 2003
    Assignee: General Electric Company
    Inventors: John Robert Campbell, Thomas Miebach, Monica Marugan, Thomas Arnold Ebeling
  • Patent number: 6613248
    Abstract: Strontium, calcium, strontium calcium, strontium calcium magnesium, calcium magnesium aluminates, and strontium borates activated with Pr3+ exhibit characteristics of quantum-splitting phosphors under VUV excitation. A large emission peak at about 405 nm under VUV excitation is used conveniently to identify quantum-splitting phosphors. Improvements may be achieved with addition of fluorides or boric acid as a flux during the preparation of the phosphors. It is also possible to predict improvement in quantum efficiency by observing the ratio of emission intensities at about 480 nm and about 610 nm.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: September 2, 2003
    Assignee: General Electric Company
    Inventors: Anant Achyut Setlur, Alok Mani Srivastava
  • Patent number: 6609894
    Abstract: A gas turbine airfoil and methods for manufacturing and repair of an airfoil, the airfoil comprising a wall, the wall defining the perimeter of the airfoil and comprising a leading edge section and a trailing edge section, wherein a majority of the surface area of the wall comprises a first material, the first material having an oxidation resistance and a melting temperature, and at least one portion of the wall comprises a second material, the second material having an oxidation resistance that is greater than the oxidation resistance of the first material and a melting temperature that is at least about 83 degrees Celsius (about 150 degrees Fahrenheit) greater than the melting temperature of the first material, the at least one portion of the wall located in at least one section of the wall selected from the group consisting of the leading edge section and the trailing edge section.
    Type: Grant
    Filed: June 26, 2001
    Date of Patent: August 26, 2003
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Charles Gitahi Mukira
  • Patent number: 6610420
    Abstract: A method for forming a thermal barrier coating system on a turbine engine component includes forming a bondcoat on the turbine engine component and depositing a thermal barrier coating so as to overlie the bondcoat. The bondcoat is formed by thermally co-spraying first and second distinct alloy powders on the turbine engine component forming an oxidation-resistant region, and thermally spraying a third alloy powder on the oxidation-resistant region to form a bonding region.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: August 26, 2003
    Assignee: General Electric Company
    Inventors: Anthony Mark Thompson, Wayne Charles Hasz
  • Patent number: 6610370
    Abstract: An article includes a silicon-containing substrate and a modified mullite coating. The modified mullite coating comprises mullite and a modifier component that reduces cracks in the modified mullite coating. The article can further comprise a thermal barrier coating applied to the modified mullite coating. The modified mullite coating functions as a bond coating between the external environmental/thermal barrier coating and the silicon-containing substrate. In a method of forming an article, a silicon-containing substrate is formed and a modified mullite coating is applied. The modified mullite coating comprises mullite and a modifier component that reduces cracks in the modified mullite coating.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: August 26, 2003
    Assignee: General Electric Company
    Inventors: Hongyu Wang, Kang Neung Lee
  • Patent number: 6610814
    Abstract: The present invention relates to a synthetic method in which one or more diaryl carbonates is reacted with one or more dihydroxy aromatic compounds in the presence of a transesterification catalyst under melt polymerization conditions to afford a product polycarbonate. The transesterifcation catalysts used according to the method of the present invention are alkali metal salts and alkaline earth metal salts of antimony oxides or germanium oxides in combination with tetraalkyl ammonium or tetraalkyl phosphonium compounds which serve as co-catalysts. The antimony oxide derivative “tartar emetic”, structure IV, was shown to possess excellent activity as a transesterifcation catalyst for the preparation of polycarbonate under melt polymerization conditions.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: August 26, 2003
    Assignee: General Electric Company
    Inventors: John Patrick Lemmon, Oltea Puica Siclovan
  • Patent number: 6610409
    Abstract: Multilayer articles are disclosed which comprise: a substrate layer comprising at least one thermoplastic polymer, thermoset polymer, cellulosic material, glass, or metal, and at least one coating layer thereon, said coating layer comprising at least one stabilizer additive and a thermally stable polymer comprising resorcinol arylate polyester chain members substantially free of anhydride linkages linking at least two mers of the polymer chain, prepared by an interfacial method comprising the steps of: (a) combining at least one resorcinol moiety and at least one catalyst in a mixture of water and at least one organic solvent substantially immiscible with water; and (b) adding to the mixture from (a) at least one dicarboxylic acid dichloride while maintaining the pH between 3 and 8.5 through the presence of an acid acceptor, wherein the total molar amount of acid chloride groups is stoichiometrically deficient relative to the total molar amount of phenolic groups.
    Type: Grant
    Filed: July 18, 2001
    Date of Patent: August 26, 2003
    Assignee: General Electric Company
    Inventors: James Edward Pickett, Joseph Anthony Suriano, Steven Thomas Rice, Xiangyang Li
  • Patent number: 6607918
    Abstract: A fluorescent probe is applied to bind to a metal oxide on a substrate and the substrate is exposed to an ultraviolet light to identify the metal oxide. A chemical cleaning or stripping solution is selected by combinatorial high throughput screening (CHTS). In the method, an array of regions is defined on a substrate, a candidate cleaning/stripping solution is deposited onto the regions to effect cleaning/stripping of the regions; a fluorescent probe is applied to bind to a metal oxide on the substrate; the substrate is exposed to an ultraviolet light to identify the metal oxide and a product of the cleaning/stripping is evaluated according to the identified metal oxide. An activated metal substrate composition is provided that comprises a metal substrate with a contaminant metal oxide coating and a fluorescent activator bound to the substrate by reaction with the metal oxide coating.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: August 19, 2003
    Assignee: General Electric Company
    Inventors: John Robert LaGraff, James Claude Carnahan, D Sangeeta, James Anthony Ruud
  • Patent number: 6608147
    Abstract: Copolymers of polycarbonates or polyarylates with polyether polymers such as polyethersulfones, polyetherketones, and polyetherimides are prepared by reaction of the polyether polymer-forming reagents, e.g., bisphenol A disodium salt and bis(4-chlorophenyl) sulfone, in the presence of the polycarbonate or polyarylate. The reaction may take place in a dipolar aprotic solvent, or in a water-immiscible aromatic solvent in the presence of a phase transfer catalyst, preferably a hexaalkylguanidinium halide. Hydroxy-terminated polyether oligomers may be produced from the copolymers by saponification of carbonate or ester groups.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: August 19, 2003
    Assignee: General Electric Company
    Inventor: Tohru Takekoshi
  • Patent number: 6608163
    Abstract: The present invention provides polycarbonate copolymers having improved hydrolytic stability, solvent resistance, or combinations thereof. In particular, certain of the copolymers of the invention have improved resistance to dilute caustic solution. Thus, the copolymers of the present invention are particularly useful as structural elements in applications where such elements routinely come in contact with caustic solutions, such as in automatic dishwashing equipment. Preferred comonomers include 4,4′-biphenol, bis-(4-hydroxyphenyl)terephthalamide (“BHPT”), and a bisimide bisphenol obtained by reacting Bisphenol A dianhydride (BPADA) with 4,4′-isopropylidene phenol aniline. The comonomers are utilized along with 2,2-bis(4-hydroxyphenyl)propane (Bisphenol A) in concentrations in a range between about 1 and about 50 weight percent of the repeating units in the polycarbonate.
    Type: Grant
    Filed: January 17, 2001
    Date of Patent: August 19, 2003
    Assignee: General Electric Company
    Inventors: Christian Maria Emile Bailly, Tiberiu Mircea Siclovan
  • Patent number: 6607847
    Abstract: An article, such as an airfoil having a melting temperature of at least about 1500° C. and comprising a first piece and a second piece joined by a braze to the first piece. The first piece comprises one of a first niobium-based refractory metal intermetallic composite and a first molybdenum-based refractory metal intermetallic composite, and the second piece comprises one of a second niobium-based refractory metal intermetallic composite and a second molybdenum-based refractory metal intermetallic composite. The braze joining the first piece to the second piece comprises a first metallic element and a second metallic element, wherein the first metallic element is one of titanium, palladium, zirconium, niobium, and hafnium, and wherein the second metallic element is one of titanium, palladium, zirconium, niobium, hafnium, aluminum, chromium, vanadium, platinum, gold, iron, nickel, and cobalt, the first metallic element being different from the second metallic element.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: August 19, 2003
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Bernard Patrick Bewlay
  • Patent number: 6608678
    Abstract: The present invention provides a method for monitoring a reaction mixture using Raman spectroscopy. In a preferred embodiment, the invention provides a method for monitoring bulk and thin film melt polycarbonate polymerization reactions. In this method, the relative and absolute concentrations of the starting materials diphenylcarbonate (DPC) and bisphenol-A (BPA) are determined. Monitoring and maintenance of optimum stoichiometry in such a reaction is critical to ensuring desired polycarbonate product quality.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: August 19, 2003
    Assignee: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, Ronald Eugene Shaffer, Patrick Joseph McCloskey
  • Patent number: 6608164
    Abstract: The present invention relates to a synthetic method in which one or more diaryl carbonates is reacted with one or more dihydroxy aromatic compounds in the presence of a transesterification catalyst under melt polymerization conditions to afford a product polycarbonate. The transesterifcation catalysts used according to the method of the present invention are alkali metal salts and alkaline earth metal salts of heterocyclic diols in combination with tetraalkylammonium or tetraalkylphosphonium compounds which serve as co-catalysts. The furan diol derivative dimethyl 3,4-dihydroxy-2,5-furandiacarboxylate disodium salt, structure IV, was shown to possess excellent activity as a transesterifcation catalyst for the preparation of polycarbonate under melt polymerization conditions.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: August 19, 2003
    Assignee: General Electric Company
    Inventors: John Patrick Lemmon, Ronald James Wroczynski
  • Patent number: 6609217
    Abstract: A system and method for diagnosing and validating a machine over a network using waveform data. Historical waveform data are obtained via the network from machines having known faults along with corresponding actions for repairing the machines and are used to develop fault classification rules. The fault classification rules are stored in a diagnostic knowledge database. The database of classification rules are used to diagnose new waveform data from a machine having an unknown fault, via the network.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: August 19, 2003
    Assignee: General Electric Company
    Inventors: Piero Patrone Bonissone, Yu-To Chen, Vipin Kewal Ramani, Rasiklal Punjalal Shah, John Andrew Johnson, Phillip Edward Steen, Ramesh Ramchandran
  • Patent number: 6608432
    Abstract: An apparatus for cathodic arc coating. The apparatus includes: a vacuum chamber which includes an anode; a power supply; and a cathode target assembly connected to the power supply. The cathode target assembly includes a cathode target and a target holder. In the preferred embodiment, a conductive interlayer is located between the cathode target and the target holder, and a cooling block is in contact with the cathode target.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: August 19, 2003
    Assignee: General Electric Company
    Inventors: Scott Andrew Weaver, Don Mark Lipkin, Reed Roeder Corderman, Terry Clifford Cooper
  • Patent number: 6607814
    Abstract: Substantially solvent-free multilayer articles characterized by excellent color retention and gloss retention, solvent resistance and recyclability comprise a substrate layer comprising a first material selected from the group consisting of a metal, ceramic, glass, a cellulosic material, a thermoset resin, and a thermoplastic resin, and a resinous coating layer which comprises at least one auxiliary color stabilizer additive and an arylate polymer comprising ester structural units derived from a resorcinol or alkylresorcinol isophthalate-terephthalate. An intermediate layer may also be present.
    Type: Grant
    Filed: July 18, 2001
    Date of Patent: August 19, 2003
    Assignee: General Electric Company
    Inventors: James Edward Pickett, Joseph Anthony Suriano, Steven Thomas Rice, Xiangyang Li