Patents Represented by Attorney Patent Law Group: Atkins & Associate, P.C.
  • Patent number: 8158510
    Abstract: A semiconductor device is made by depositing an encapsulant material between first and second plates of a chase mold to form a molded substrate. A first conductive layer is formed over the molded substrate. A resistive layer is formed over the first conductive layer. A first insulating layer is formed over the resistive layer. A second insulating layer is formed over the first insulating layer, resistive layer, first conductive layer, and molded substrate. A second conductive layer is formed over the first insulating layer, resistive layer, and first conductive layer. A third insulating layer is formed over the second insulating layer and second conductive layer. A bump is formed over the second conductive layer. The first conductive layer, resistive layer, first insulating layer, and second conductive layer constitute a MIM capacitor. The second conductive layer is wound to exhibit inductive properties.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: April 17, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Yaojian Lin
  • Patent number: 8147165
    Abstract: An artificial ground reef has an attached implanting body to allow seaweed to readily attach and inhabit the artificial ground reef. The artificial ground reef has a main body having an upper member and lower member. Seawater flows in all directions through a plurality of through-holes on a lower part of the lower member. A detachment groove is formed on a plurality of locations of the upper face of the main body. An implanting body has a lower part detachably connected to the detachment groove. The implanting body is separated from the main body and connected detachably to the detachment groove of the main body when seaweed is attached and inhabiting the outer periphery. The main body and implanting body are porous concrete to aid with attachment and inhabitation of the seaweed.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: April 3, 2012
    Inventor: Oh-Yong Sung
  • Patent number: 8143097
    Abstract: A semiconductor device is made by mounting a semiconductor wafer to a temporary carrier. A plurality of TSV is formed through the wafer. A cavity is formed partially through the wafer. A first semiconductor die is mounted to a second semiconductor die. The first and second die are mounted to the wafer such that the first die is disposed over the wafer and electrically connected to the TSV and the second die is disposed within the cavity. An encapsulant is deposited over the wafer and first and second die. A portion of the encapsulant is removed to expose a first surface of the first die. A portion of the wafer is removed to expose the TSV and a surface of the second die. The remaining portion of the wafer operates as a TSV interposer for the first and second die. An interconnect structure is formed over the TSV interposer.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: March 27, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: HeeJo Chi, NamJu Cho, HanGil Shin
  • Patent number: 8143108
    Abstract: A semiconductor device has a first substrate with a central region. A plurality of bumps is formed around a periphery of the central region of the first substrate. A first semiconductor die is mounted to the central region of the first substrate. A second semiconductor die is mounted to the first semiconductor die over the central region of the first substrate. A height of the first and second die is less than or equal to a height of the bumps. A second substrate has a thermal conduction channel. A surface of the second semiconductor die opposite the first die is mounted to the thermal conductive channel of the second substrate. A thermal interface layer is formed over the surface of the second die. The bumps are electrically connected to contact pads on the second substrate. A conductive plane is formed over a surface of the second substrate.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: March 27, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Rajendra D. Pendse
  • Patent number: 8138014
    Abstract: A semiconductor wafer has a plurality of first semiconductor die. A second semiconductor die is mounted to the first semiconductor die. The active surface of the first semiconductor die is oriented toward an active surface of the second semiconductor die. An encapsulant is deposited over the first and second semiconductor die. A portion of a back surface of the second semiconductor die opposite the active surface is removed. Conductive pillars are formed around the second semiconductor die. TSVs can be formed through the first semiconductor die. An interconnect structure is formed over the back surface of the second semiconductor die, encapsulant, and conductive pillars. The interconnect structure is electrically connected to the conductive pillars. A portion of a back surface of the first semiconductor die opposite the active surface is removed. A heat sink or shielding layer can be formed over the back surface of the first semiconductor die.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: March 20, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: HeeJo Chi, NamJu Cho, HanGil Shin
  • Patent number: 8138558
    Abstract: A semiconductor device has a well region formed within a substrate. A gate structure is formed over a surface of the substrate. A source region is formed within the substrate adjacent to the gate structure. A drain region is formed within the substrate adjacent to the gate structure. A first clamping region and second clamping region below the source region and drain region. A trench is formed through the source region. The trench allows the width of the source region to be reduced to 0.94 to 1.19 micrometers. A plug is formed through the trench. A source tie is formed through the trench over the plug. An interconnect structure is formed over the source region, drain region, and gate structure. The semiconductor device can be used in a power supply to provide a low voltage to electronic equipment such as a portable electronic device and data processing center.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: March 20, 2012
    Assignee: Great Wall Semiconductor Corporation
    Inventors: Patrick M. Shea, Samuel J. Anderson
  • Patent number: 8137995
    Abstract: A semiconductor device is made by forming a first active device on a first side of a semiconductor wafer. A first insulating layer is formed over the first side of the wafer. A first conductive layer is formed over the first insulating layer. A first interconnect structure is formed over the first insulating layer and first conductive layer. A temporary carrier is mounted to the first interconnect structure. A second active device is formed on a second side of the semiconductor wafer. A second insulating layer is formed over the second side of the wafer. A second conductive layer is formed over the second insulating layer. A second interconnect structure is formed over the second insulating layer and second conductive layer. The temporary carrier is removed, leaving a double-sided semiconductor device. The double-sided semiconductor device is enclosed in a package with the first and second interconnect structures electrically connected.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: March 20, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: OhHan Kim, JoungUn Park, SunMi Kim
  • Patent number: 8136248
    Abstract: A building panel for residential and commercial construction uses a plurality of insulating blocks connected together by adhesive. The insulation blocks are typically made of foam. A plurality of support members are disposed on opposite sides of the insulating blocks and offset with respect to the adjacent support member. The support member are typically made of metal and can have different shapes including “T” shape, “U” shape, and “L” shape. Each support member has a head portion in contact with a surface of the insulating block and a stem portion extending into the insulating block and having a length less than a width of the insulating block so that a thermal conduction path of the support member is discontinuous across the insulating block. The panel can be used as a curtain wall panel in high-rise construction, as well as bodies for aircraft, automotive, and marine applications.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: March 20, 2012
    Assignee: Global Building Systems, Inc.
    Inventors: James L. Beavers, Jr., Bruce B. Solper
  • Patent number: 8138027
    Abstract: A semiconductor device is made by providing a semiconductor die having an optically active area, providing a leadframe or pre-molded laminated substrate having a plurality of contact pads and a light transmitting material disposed between the contact pads, attaching the semiconductor die to the leadframe so that the optically active area is aligned with the light transmitting material to provide a light transmission path to the optically active area, and disposing an underfill material between the semiconductor die and leadframe. The light transmitting material includes an elevated area to prevent the underfill material from blocking the light transmission path. The elevated area includes a dam surrounding the light transmission path, an adhesive ring, or the light transmission path itself can be the elevated area. An adhesive ring can be disposed on the dam. A filler material can be disposed between the light transmitting material and contact pads.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: March 20, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Zigmund R. Camacho, Henry D. Bathan, Lionel Chien Hui Tay, Arnel Senosa Trasporto
  • Patent number: 8133762
    Abstract: A semiconductor device is made by providing a sacrificial substrate and depositing an adhesive layer over the sacrificial substrate. A first conductive layer is formed over the adhesive layer. A polymer pillar is formed over the first conductive layer. A second conductive layer is formed over the polymer pillar to create a conductive pillar with inner polymer core. A semiconductor die or component is mounted over the substrate. An encapsulant is deposited over the semiconductor die or component and around the conductive pillar. A first interconnect structure is formed over a first side of the encapsulant. The first interconnect structure is electrically connected to the conductive pillar. The sacrificial substrate and adhesive layers are removed. A second interconnect structure is formed over a second side of the encapsulant opposite the first interconnect structure. The second interconnect structure is electrically connected to the conductive pillar.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: March 13, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Byung Tai Do, Shuangwu Huang
  • Patent number: 8129845
    Abstract: A semiconductor wafer includes a plurality of semiconductor die. Contact pads are formed on an active area of the semiconductor die and non-active area of the semiconductor wafer between the semiconductor die. Solder bumps are formed on the contact pads in both the active area of the semiconductor die and non-active area of the semiconductor wafer between the semiconductor die. The I/O terminal count of the semiconductor die is increased by forming solder bumps in the non-active area of the wafer. An encapsulant is formed over the solder bumps. The encapsulant provides structural support for the solder bumps formed in the non-active area of the semiconductor wafer. The semiconductor wafer undergoes grinding after forming the encapsulant to expose the solder bumps. The semiconductor wafer is singulated to separate the semiconductor die. The semiconductor die is mounted to a package substrate with solder paste or socket.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: March 6, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: TaeHoan Jang, JaeHun Ku, XuSheng Bao
  • Patent number: 8129837
    Abstract: A flip chip interconnect pad layout has the die signal pads are arranged on the die surface near the perimeter of the die, and the die power and ground pads arranged on the die surface inboard from the signal pads; and has the signal pads on the corresponding package substrate arranged in a manner complementary to the die pad layout and the signal lines routed from the signal pads beneath the die edge away from the die footprint, and has the power and ground lines routed to vias beneath the die footprint. Also, a flip chip semiconductor package in which the flip chip interconnect pad layouts have the die signal pads situated in the marginal part of the die and the die power and ground pads arranged on the die surface inboard from the signal pads, and the corresponding package substrates have signal pads arranged in a manner complementary to the die pad layout and signal lines routed from the signal pads beneath the die edge away from the die footprint.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: March 6, 2012
    Assignee: STATS ChipPac, Ltd.
    Inventor: Rajendra D. Pendse
  • Patent number: 8130495
    Abstract: An audio sound system has a printed circuit board disposed within a compact case. The PCB has a power conversion circuit for generating an operating potential, audio amplifier circuit coupled for receiving the operating potential to amplify an audio signal, and peak voltage and current limiting circuit coupled to the audio amplifier circuit to avoid hard clipping of the audio signal. The power conversion circuit has heat-generating components. A cooling tunnel is mounted over the printed circuit board. A cooling fan is mounted in the compact case adjacent a first opening of the cooling tunnel for directing air flow through a second opening of the cooling tunnel over the PCB. The cooling tunnel has a notch formed in a side of the cooling tunnel for directing air flow over the PCB. The audio amplifier circuit can generate greater than 500 watts into a 4-ohm load.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: March 6, 2012
    Assignee: KMC Music, Inc.
    Inventors: Andrew L. Field, Scott L. Andres, Jeffrey D. Genzler
  • Patent number: 8129841
    Abstract: A flip chip interconnect has a tapering interconnect structure, and the area of contact of the interconnect structure with the site on the substrate metallization is less than the area of contact of the interconnect structure with the die pad. Also, a bond-on-lead or bond-on-narrow pad or bond on a small area of a contact pad interconnection includes such tapering flip chip interconnects. Also, methods for making the interconnect structure include providing a die having interconnect pads, providing a substrate having interconnect sites on a patterned conductive layer, providing a bump on a die pad, providing a fusible electrically conductive material either at the interconnect site or on the bump, mating the bump to the interconnect site, and heating to melt the fusible material.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: March 6, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Rajendra D. Pendse, KyungOe Kim, TaeWoo Kang
  • Patent number: 8124490
    Abstract: A flip chip semiconductor device has a substrate with a plurality of active devices formed thereon. A passive device is formed on the substrate by depositing a first conductive layer over the substrate, depositing an insulating layer over the first conductive layer, and depositing a second conductive layer over the insulating layer. The passive device is a metal-insulator-metal capacitor. The deposition of the insulating layer and first and second conductive layers is performed without photolithography. An under bump metallization (UBM) layer is formed on the substrate in electrical contact with the plurality of active devices. A solder bump is formed over the UBM layer. The passive device can also be a resistor by depositing a resistive layer over the first conductive layer and depositing a third conductive layer over the resistive layer. The passive device electrically contacts the solder bump.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: February 28, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Haijing Cao, Qing Zhang, Robert C. Frye
  • Patent number: 8125073
    Abstract: A semiconductor device has a wafer for supporting the device and a conductive layer formed over a top surface of the wafer. A carrier wafer is permanently bonded over the conductive layer. Within the wafer and the carrier wafer, an interconnect structure is formed. The interconnect structure includes a first via formed in the wafer that exposes the conductive layer, a second via formed in the carrier wafer that exposes the conductive layer, a first metal layer deposited over the first via, the first metal layer in electrical contact with the conductive layer, and a second metal layer deposited over the second via, the second metal layer in electrical contact with the conductive layer. First and second insulation layers are deposited over the first and second metal layers respectively. The first or second insulation layer has an etched portion to expose a portion of the first or second metal layer.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: February 28, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Byung Joon Han, Nathapong Suthiwongsunthorn, Pandi Chelvam Marimuthu, Kock Liang Heng
  • Patent number: 8120183
    Abstract: A method of manufacturing a semiconductor device includes providing a substrate having a first conductive layer disposed on a top surface of the substrate. A high resistivity layer is formed over the substrate and the first conductive layer. A dielectric layer is deposited over the substrate, first conductive layer and high resistivity layer. A portion of the dielectric layer, high resistivity layer, and first conductive layer forms a capacitor stack. A first passivation layer is formed over the dielectric layer. A second conductive layer is formed over the capacitor stack and a portion of the first passivation layer. A first opening is etched in the dielectric layer to expose a surface of the high resistivity layer. A third and fourth conductive layer is deposited over the first opening in the dielectric layer and a portion of the first passivation layer.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: February 21, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Robert C. Frye
  • Patent number: 8111112
    Abstract: A semiconductor device has a first coil structure formed over the substrate. A second coil structure is formed over the substrate adjacent to the first coil structure. A third coil structure is formed over the substrate adjacent to the second coil structure. The first and second coil structures are coupled by mutual inductance, and the second and third coil structures are coupled by mutual inductance. The first, second, and third coil structures each have a height greater than a skin current depth of the coil structure defined as a depth which current reduces to 1/(complex permittivity) of a surface current value. In the case of copper, the coil structures have a height greater than 5 micrometers. The first, second, and third coil structures are arranged in rounded or polygonal pattern horizontally across the substrate with a substantially flat vertical profile.
    Type: Grant
    Filed: February 15, 2010
    Date of Patent: February 7, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Kai Liu, Robert Charles Frye
  • Patent number: 8111113
    Abstract: A semiconductor device has a first coil structure formed over the substrate. A second coil structure is formed over the substrate adjacent to the first coil structure. A third coil structure is formed over the substrate adjacent to the second coil structure. The first and second coil structures are coupled by mutual inductance, and the second and third coil structures are coupled by mutual inductance. The first, second, and third coil structures each have a height greater than a skin current depth of the coil structure defined as a depth which current reduces to 1/(complex permittivity) of a surface current value. A thin film capacitor is formed within the semiconductor device by a first metal plate, dielectric layer over the first metal plate, and second and third electrically isolated metal plates opposite the first metal plate. The terminals are located on the same side of the capacitor.
    Type: Grant
    Filed: February 15, 2010
    Date of Patent: February 7, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Kai Liu, Robert Charles Frye
  • Patent number: 8110441
    Abstract: A semiconductor device is made by mounting a plurality of semiconductor die to a substrate, depositing an encapsulant over the substrate and semiconductor die, forming a shielding layer over the semiconductor die, creating a channel in a peripheral region around the semiconductor die through the shielding layer, encapsulant and substrate at least to a ground plane within the substrate, depositing a conductive material in the channel, and removing a portion of the conductive material in the channel to create conductive vias in the channel which provide electrical connection between the shielding layer and ground plane. An interconnect structure is formed on the substrate and are electrically connected to the ground plane. Solder bumps are formed on a backside of the substrate opposite the semiconductor die. The shielding layer is connected to a ground point through the conductive via, ground plane, interconnect structure, and solder bumps of the substrate.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: February 7, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Harry Chandra, Flynn Carson