Patents Represented by Attorney Patent Law Office of David G. Beck
  • Patent number: 7629773
    Abstract: A method and apparatus that allows the end user to optimize the performance of an all-electric or hybrid vehicle and its charging system for a desired mode of operation is provided. The system of the invention includes multiple charging/operational modes from which the user may select. Each charging/operational mode controls the cut-off voltage used during charging and the maintenance temperature of the battery pack.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: December 8, 2009
    Assignee: Tesla Motors, Inc.
    Inventors: Martin Forest Eberhard, Jeffrey Brian Straubel, Kurt Russell Kelty, Scott Ira Kohn, Weston Arthur Hermann, Eugene Michael Berdichevsky, Andrew Gregory Simpson, Craig Bruce Carlson
  • Patent number: 7622897
    Abstract: A method and apparatus that allows the end user to optimize the performance of an all-electric or hybrid vehicle and its charging system for a desired mode of operation is provided. The system of the invention includes multiple charging/operational modes from which the user may select. Each charging/operational mode controls the cut-off voltage used during charging and the maintenance temperature of the battery pack.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: November 24, 2009
    Assignee: Tesla Motors, Inc.
    Inventors: Martin Forest Eberhard, Jeffrey Brian Straubel, Kurt Russell Kelty, Scott Ira Kohn, Weston Arthur Hermann, Eugene Michael Berdichevsky, Andrew Gregory Simpson, Craig Bruce Carlson
  • Patent number: 7619725
    Abstract: A critical wavelength refractometer is provided. A broadband light source (413) is optically coupled to a sensor (401), the sensor having at least one sensing surface (407). As the light from the broadband light source passes through the sensor, it undergoes multiple internal reflections against the sensing surface. Due to the index of refraction of the material in contact with the sensing surface, a portion of the light passing through the sensor is reflected while a second portion of the light is transmitted through the sensing surface and into the material. A detector (421) coupled to the sensor measures the spectral intensity of the light that passes completely through the sensor after having undergone the multiple internal reflections against the sensing surface. A microprocessor (423) coupled to the detector determines the critical wavelength based on the spectral intensity measurement, thereby allowing the index of refraction of the material to be determined.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: November 17, 2009
    Assignee: Sealite Engineering, Inc.
    Inventor: George A. Seaver
  • Patent number: 7615138
    Abstract: An electrolysis system (100) is provided. In addition to an electrolysis tank (101) and a membrane (105) separating the tank into two regions, the system includes at least one pair of low voltage electrodes (115/117) of a first type comprised of a first material, at least one pair of low voltage electrodes (117/118) of a second type comprised of a second material different from the first material, and at least one pair of high voltage electrodes (121/122) comprised of a material that may be the same as either the first or second material or different from both the first and second material. The low voltage applied to the low voltage electrodes and the high voltage applied to the high voltage electrodes is pulsed with the pulses occurring simultaneously with the same pulse duration.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: November 10, 2009
    Inventor: Nehemia Davidson
  • Patent number: 7611618
    Abstract: A method of operating an electrolysis system (100) to achieve high hydrogen output flow rates is provided. At least three types of electrodes are positioned within an electrolysis tank (101), the three types including at least one pair of low voltage electrodes (115/117) comprised of a first material, at least one pair of low voltage electrodes (117/118) comprised of a second material different from the first material, and at least one pair of high voltage electrodes (121/122). The low voltage and high voltage cathode electrodes are positioned within one region of the tank (101) while the low voltage and high voltage anode electrodes are positioned within the second region of the tank (101), the two regions separated by a membrane (105). The tank (101) is filled with an electrolyte containing water (103). The power supplied to the low and high voltage electrodes is simultaneously pulsed.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: November 3, 2009
    Inventor: Nehemia Davidson
  • Patent number: 7586963
    Abstract: An extremely versatile diode laser assembly is provided, the assembly comprised of a plurality of diode laser subassemblies mounted to a stepped cooling block. The stepped cooling block allows the fabrication of a close packed and compact assembly in which individual diode laser subassembly output beams do not interfere with one another.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: September 8, 2009
    Assignee: nLight Photonics Corporation
    Inventors: Derek E. Schulte, Yu Yan, Robert J. Martinsen, Aaron L. Hodges, Scott R. Karlsen
  • Patent number: 7579725
    Abstract: A rotor assembly cooling system (100) and method of using same are provided. A portion of the rotor shaft (103) is hollow, the rotor shaft including an open end (107) and a closed end (105). A coolant feed tube (109) is rigidly attached to the rotor shaft (103) using one or more support members (111), thus causing the shaft and the feed tube to rotate at the same rate. Coolant is pumped through the feed tube until it exits the end of the feed tube and flows against the inside surface of the closed end of the rotor shaft causing the coolant to change direction and flow back through the coolant flow region, this region being defined as the space between the outer surface of the feed tube and the inner surface of the hollow rotor shaft.
    Type: Grant
    Filed: December 20, 2008
    Date of Patent: August 25, 2009
    Assignee: Tesla Motors, Inc.
    Inventors: Peng Zhou, Nicholas Robert Kalayjian, Grant Dufresne Cutler, Peteris Koch Augenbergs
  • Patent number: 7489794
    Abstract: An acoustically tuned earpiece is provided. Venting is performed by boring a control port, separate from the output port, into the driver. The diameter of the control port must be sufficiently small to restrict the flow of air into and out of the driver, thus isolating the acoustic performance of the driver from the volume and/or the sealing capabilities of the earpiece enclosure. The exact size of the venting port is selected to achieve the desired acoustic performance. In all cases, the control port has a cross-sectional area that is less than 25 percent of the cross-sectional area of the driver's output port. In order to optimize the size of the control port, an iterative process is preferably used in which the cross-sectional area of the control port is gradually increased while monitoring the performance of the driver compared to a target response.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: February 10, 2009
    Assignee: Ultimate Ears, LLC
    Inventor: Jerry J. Harvey
  • Patent number: 7489057
    Abstract: A rotor assembly cooling system (100) and method of using same are provided. A portion of the rotor shaft (103) is hollow, the rotor shaft including an open end (107) and a closed end (105). A coolant feed tube (109) is rigidly attached to the rotor shaft (103) using one or more support members (111), thus causing the shaft and the feed tube to rotate at the same rate. Coolant is pumped through the feed tube until it exits the end of the feed tube and flows against the inside surface of the closed end of the rotor shaft causing the coolant to change direction and flow back through the coolant flow region, this region being defined as the space between the outer surface of the feed tube and the inner surface of the hollow rotor shaft.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: February 10, 2009
    Assignee: Tesla Motors, Inc.
    Inventors: Peng Zhou, Nicholas Robert Kalayjian, Grant Dufresne Cutler, Peteris Koch Augenbergs
  • Patent number: 7443895
    Abstract: An extremely versatile diode laser assembly is provided, the assembly comprised of a plurality of diode laser subassemblies mounted to a stepped cooling block. The stepped cooling block allows the fabrication of a close packed and compact assembly in which individual diode laser subassembly output beams do not interfere with one another.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: October 28, 2008
    Assignee: nLight Photonics Corporation
    Inventors: Derek E. Schulte, Yu Yan, Robert J. Martinsen, Aaron L. Hodges, Scott R. Karlsen
  • Patent number: 7444046
    Abstract: A single piece optic for coupling the output of a diode laser array into an optical fiber array is provided. The coupling optic has a planar back surface which, during use with a diode laser array, is positioned substantially parallel to the front face of the laser array. The coupling optic is fabricated from a single substrate and is comprised of a plurality of optical elements. Depending upon the technique used to fabricate the optical elements, the individual optical elements may be trapezoidally-shaped or rectangularly-shaped. The front surface of each optical element is tilted, thus preventing reflected laser radiation from resonating within the diode laser's emitters. Preferably the wedge angle for the tilted front surface is greater than 2 mrad, thus accomplishing the goal of limiting feedback into the emitters, and less than 4 mrad, thus reducing beam steering.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: October 28, 2008
    Assignee: nLight Photonics Corporation
    Inventor: Scott R. Karlsen
  • Patent number: 7436868
    Abstract: An extremely versatile diode laser assembly is provided, the assembly comprised of a plurality of diode laser subassemblies mounted to a stepped cooling block. The stepped cooling block allows the fabrication of a close packed and compact assembly in which individual diode laser subassembly output beams do not interfere with one another.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: October 14, 2008
    Assignee: nLight Photonics Corporation
    Inventors: Derek E. Schulte, Yu Yan, Robert J. Martinsen, Aaron L. Hodges, Scott R. Karlsen
  • Patent number: 7420996
    Abstract: An extremely versatile diode laser assembly is provided, the assembly comprised of a plurality of diode laser subassemblies mounted to a stepped cooling block. The stepped cooling block allows the fabrication of a close packed and compact assembly in which individual diode laser subassembly output beams do not interfere with one another.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: September 2, 2008
    Assignee: nLight Photonics Corporation
    Inventors: Derek E. Schulte, Yu Yan, Robert J. Martinsen, Aaron L. Hodges, Scott R. Karlsen
  • Patent number: 7317806
    Abstract: A method of optimizing the audio performance of an earpiece and the resultant device are provided. The disclosed earpiece combines at least two drivers within a single earpiece. If a pair of drivers is used, each driver has a discrete sound delivery tube. If more than two drivers are used, preferably the outputs from the two lower frequency drivers are merged into a single sound delivery tube while the output from the third driver is maintained in a separate, discrete sound tube. To compensate for the inherent phase shift of the earpiece the lengths of the sound delivery tubes, and thus driver offset, are regulated. Further audio performance optimization can be achieved through an iterative process of measuring the performance of the earpiece and making further, minor adjustments to the sound delivery tube lengths. The sound delivery tubes can include transition regions. The earpiece is configured to use removable/replaceable eartips.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: January 8, 2008
    Assignee: Ultimate Ears, LLC
    Inventors: Jerry J. Harvey, Medford Alan Dyer
  • Patent number: 7263195
    Abstract: A multi-driver in-ear monitor for use with either a recorded or a live audio source is provided. If a pair of drivers is used, each driver has an individual sound delivery tube. If three drivers are used, the outputs from two of the drivers are merged into a single sound delivery tube while the output from the third driver is maintained in a separate, discrete sound tube. The sound delivery tubes remain separate throughout the end portion of the earpiece. The earpiece tip is configured to be fitted with any of a variety of sleeves (e.g., foam sleeves, flanged sleeves, etc.), thus allowing the in-ear monitor to be easily tailored to comfortably fit within any of a variety of ear canals. Due to the size constraints of such an earpiece, the sound delivery tubes include a transition region. Acoustic filters (i.e., dampers) can be interposed between one or both driver outputs and the earpiece output.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: August 28, 2007
    Assignee: Ultimate Ears, LLC
    Inventors: Jerry J. Harvey, Medford Alan Dyer
  • Patent number: 7194102
    Abstract: An in-ear monitor for use with either a recorded or a live audio source is provided. The disclosed in-ear monitor combines a pair of diaphragm drivers and a single armature driver within a single earpiece, thereby taking advantage of the capabilities of both types of driver. Preferably, the diaphragm is used to reproduce the lower frequencies while the higher frequencies are accurately reproduced by the armature driver. Such a hybrid design offers improved fidelity across the desired frequency spectrum and does so at a reduced cost in comparison to multiple armature designs. In addition to the two drivers, the disclosed in-ear monitor includes means for splitting the incoming signal into separate inputs for each driver. Typically this function is performed by a passive crossover circuit although an active crossover circuit can also be used. In at least one embodiment, acoustic dampers are interposed between at least one driver output and the eartip.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: March 20, 2007
    Assignee: Ultimate Ears, LLC
    Inventor: Jerry J. Harvey
  • Patent number: 7194103
    Abstract: An in-ear monitor for use with either a recorded or a live audio source is provided. The disclosed in-ear monitor combines a single diaphragm driver and a single armature driver within a single earpiece, thereby taking advantage of the capabilities of each type of driver. Preferably, the diaphragm is used to reproduce the lower frequencies while the higher frequencies are accurately reproduced by the armature driver. Such a hybrid design offers improved fidelity across the desired frequency spectrum and does so at a reduced cost in comparison to multiple armature designs. In addition to the two drivers, the disclosed in-ear monitor includes means for splitting the incoming signal into separate inputs for each driver. Typically this function is performed by a passive crossover circuit although an active crossover circuit can also be used. In at least one embodiment, acoustic dampers are interposed between one or both driver outputs and the eartip.
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: March 20, 2007
    Assignee: Ultimate Ears, LLC
    Inventor: Jerry J. Harvey
  • Patent number: 7148606
    Abstract: An acoustic driver assembly for use with a spherical cavitation chamber is provided. The acoustic driver assembly includes at least one transducer, a head mass and a tail mass, coupled together with a centrally located threaded means (e.g., all thread, bolt, etc.). The driver assembly is either attached to the exterior surface of the spherical cavitation chamber with the same threaded means, a different threaded means, or a more permanent coupling means such as brazing, diffusion bonding or epoxy. In at least one embodiment, the transducer is comprised of a pair of piezo-electric transducers, preferably with the adjacent surfaces of the piezo-electric transducers having the same polarity. The surface of the head mass that is adjacent to the external surface of the chamber is non-flat and has a spherical curvature less than the spherical curvature of the external surface of the chamber, thus providing a ring of contact between the acoustic driver and the cavitation chamber.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: December 12, 2006
    Assignee: Impulse Devices, Inc.
    Inventors: Ross Alan Tessien, Dario Felipe Gaitan, Daniel A. Phillips
  • Patent number: 7126258
    Abstract: An acoustic driver assembly for use with any of a variety of cavitation chamber configurations, including spherical and cylindrical chambers as well as chambers that include at least one flat coupling surface, is provided. The acoustic driver assembly includes at least one transducer, a head mass and a tail mass. The end surface of the head mass is shaped so that only a ring of contact is made between the outer perimeter of the head mass of the driver assembly and the cavitation chamber to which the driver is attached. The area of the contact ring is controlled by shaping its surface.
    Type: Grant
    Filed: May 5, 2005
    Date of Patent: October 24, 2006
    Assignee: Impulse Devices, Inc.
    Inventors: Ross Alan Tessien, David G. Beck
  • Patent number: 7126256
    Abstract: An acoustic driver assembly for use with any of a variety of cavitation chamber configurations, including spherical and cylindrical chambers as well as chambers that include at least one flat coupling surface, is provided. The acoustic driver assembly includes at least one transducer, a head mass and a tail mass. The end surface of the head mass is shaped so that only a ring of contact is made between the outer perimeter of the head mass of the driver assembly and the cavitation chamber to which the driver is attached. The area of the contact ring is controlled by shaping its surface.
    Type: Grant
    Filed: May 5, 2005
    Date of Patent: October 24, 2006
    Assignee: Impulse Devices, Inc.
    Inventors: Ross Alan Tessien, David G. Beck