Patents Represented by Attorney Paul A. Gottlieb
  • Patent number: 5875607
    Abstract: A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value.
    Type: Grant
    Filed: July 18, 1997
    Date of Patent: March 2, 1999
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Arun Vohra
  • Patent number: 5872824
    Abstract: A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis.The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.
    Type: Grant
    Filed: August 8, 1996
    Date of Patent: February 16, 1999
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: David P. Fries, James F. Browning
  • Patent number: 5868876
    Abstract: A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2-4% by volume (.about.1-4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T.sub.m of molybdenum.
    Type: Grant
    Filed: May 15, 1997
    Date of Patent: February 9, 1999
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Robert Bianco, R. William Buckman, Jr., Clint B. Geller
  • Patent number: 5843287
    Abstract: A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300.degree.-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000.degree.-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points.
    Type: Grant
    Filed: January 19, 1996
    Date of Patent: December 1, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: George G. Wicks, David E. Clark, Rebecca L. Schulz
  • Patent number: 5825496
    Abstract: There is provided by this invention an optical displacement sensor that utilizes a reflective target connected to a surface to be monitored to reflect light from a light source such that the reflected light is received by a photoelectric transducer. The electric signal from the photoelectric transducer is then imputed into electronic circuitry to generate an electronic image of the target. The target's image is monitored to determine the quantity and direction of any lateral displacement in the target's image which represents lateral displacement in the surface being monitored.
    Type: Grant
    Filed: August 29, 1996
    Date of Patent: October 20, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Robert Edwin Lewis
  • Patent number: 5825672
    Abstract: The present invention is a method and system for detecting a physical feature of a test piece by detecting a pattern in a signal representing data from inspection of the test piece. The pattern is detected by automated additive decomposition of a digital point-ordered signal which represents the data. The present invention can properly handle a non-periodic signal. A physical parameter of the test piece is measured. A digital point-ordered signal representative of the measured physical parameter is generated. The digital point-ordered signal is decomposed into a baseline signal, a background noise signal, and a peaks/troughs signal. The peaks/troughs from the peaks/troughs signal are located and peaks/troughs information indicating the physical feature of the test piece is output.
    Type: Grant
    Filed: October 25, 1996
    Date of Patent: October 20, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: David M. Brudnoy
  • Patent number: 5818059
    Abstract: A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.
    Type: Grant
    Filed: August 30, 1996
    Date of Patent: October 6, 1998
    Assignee: United States of America as represented by the United States Department of Energy
    Inventors: Martin J. Coyne, Gregory M. Fiscus, Alfred G. Sammel
  • Patent number: 5811944
    Abstract: A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.
    Type: Grant
    Filed: December 18, 1996
    Date of Patent: September 22, 1998
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Stephen E. Sampayan, George J. Caporaso, Hugh C. Kirbie
  • Patent number: 5805657
    Abstract: A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: September 8, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Norman B. Heubeck
  • Patent number: 5793586
    Abstract: A device and a method for interrupting very high direct currents (greater than 100,000 amperes) and simultaneously blocking high voltages (greater than 600 volts). The device utilizes a mechanical switch to carry very high currents continuously with low loss and a silicon controlled rectifier (SCR) to bypass the current around the mechanical switch while its contacts are separating. A commutation circuit, connected in parallel with the SCR, turns off the SCR by utilizing a resonant circuit to divert the SCR current after the switch opens.
    Type: Grant
    Filed: October 25, 1996
    Date of Patent: August 11, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Joseph H. Rockot, Harvey E. Mikesell, Kamal N. Jha
  • Patent number: 5784424
    Abstract: A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis.The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.
    Type: Grant
    Filed: July 3, 1996
    Date of Patent: July 21, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: David P. Fries, James F. Browning
  • Patent number: 5783152
    Abstract: The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe.
    Type: Grant
    Filed: March 24, 1997
    Date of Patent: July 21, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Stanley E. Nave
  • Patent number: 5772328
    Abstract: An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card.
    Type: Grant
    Filed: June 20, 1996
    Date of Patent: June 30, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: James W. Kronberg
  • Patent number: 5772793
    Abstract: A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.
    Type: Grant
    Filed: August 28, 1996
    Date of Patent: June 30, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: John Ashcroft, Brian Campbell, David DePoy
  • Patent number: 5769964
    Abstract: A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eV<E.sub.g <0.7 eV and an emitter fabricated on the substrate formed from one of a p-type or an n-type material. Another thermophotovoltaic energy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers.
    Type: Grant
    Filed: August 29, 1996
    Date of Patent: June 23, 1998
    Assignee: The United States of America as reprresented by the United States Department of Energy
    Inventors: Greg W. Charache, Paul F. Baldasaro, Greg J. Nichols
  • Patent number: 5770800
    Abstract: A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.
    Type: Grant
    Filed: August 6, 1996
    Date of Patent: June 23, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Charles F. Jenkins, Boyd D. Howard
  • Patent number: 5767416
    Abstract: A tool and a method for attaching a strain gauge to a test specimen by maaining alignment of, and applying pressure to, the strain gauge during the bonding of the gauge to the specimen. The tool comprises rigid and compliant pads attached to a spring-loaded clamp. The pads are shaped to conform to the specimen surface to which the gauge is to be bonded. The shape of the pads permits the tool to align itself to the specimen and to maintain alignment of the gauge to the specimen during the bond curing process. A simplified method of attaching a strain gauge is provided by use of the tool.
    Type: Grant
    Filed: January 23, 1997
    Date of Patent: June 16, 1998
    Assignee: The United States of America as represented by the Department of Energy
    Inventor: Lisa Marie Conard
  • Patent number: 5753050
    Abstract: A thermophotovoltaic device and a method for making the thermophotovoltaic device. The device includes an n-type semiconductor material substrate having top and bottom surfaces, a tunnel junction formed on the top surface of the substrate, a region of active layers formed on top of the tunnel junction and a back surface reflector (BSR). The tunnel junction includes a layer of heavily doped n-type semiconductor material that is formed on the top surface of the substrate and a layer of heavily doped p-type semiconductor material formed on the n-type layer. An optional pseudomorphic layer can be formed between the n-type and p-type layers. A region of active layers is formed on top of the tunnel junction. This region includes a base layer of p-type semiconductor material and an emitter layer of n-type semiconductor material. An optional front surface window layer can be formed on top of the emitter layer.
    Type: Grant
    Filed: August 29, 1996
    Date of Patent: May 19, 1998
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Greg W. Charache, Paul F. Baldasaro, James L. Egley
  • Patent number: 5753109
    Abstract: An apparatus and method for supplying a vapor-phase nutrient to contaminated soil for in situ bioremediation. The apparatus includes a housing adapted for containing a quantity of the liquid nutrient, a conduit in communication with the interior of the housing, means for causing a gas to flow through the conduit, and means for contacting the gas with the liquid so that a portion thereof evaporates and mixes with the gas. The mixture of gas and nutrient vapor is delivered to the contaminated site via a system of injection and extraction wells configured to the site and provides for the use of a passive delivery system. The mixture has a partial pressure of vaporized nutrient that is no greater than the vapor pressure of the liquid. If desired, the nutrient and/or the gas may be heated to increase the vapor pressure and the nutrient concentration of the mixture.
    Type: Grant
    Filed: December 28, 1995
    Date of Patent: May 19, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Brian B. Looney, Susan M. Pfiffner, Tommy J. Phelps, Kenneth H. Lombard, Terry C. Hazen, James W. Borthen
  • Patent number: H1753
    Abstract: A bimodal propulsion and power nuclear reactor with coaxial power and propulsion cores, each with its own primary propellant/coolant. An inner core region provides electrical power while an outer annular core region surrounding the inner core region has, passageways for heating a gaseous propellant.
    Type: Grant
    Filed: April 29, 1997
    Date of Patent: October 6, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: John W. Warren, Abraham Weitzberg