Patents Represented by Attorney, Agent or Law Firm Rachel V. Leiterman
  • Patent number: 6607286
    Abstract: A lens mounted to a light emitting diode package internally redirects light within the lens so that a majority of light is emitted from the lens approximately perpendicular to a package axis of the light emitting diode package. In one embodiment, the light emitted by the light emitting diode package is refracted by a sawtooth portion of the lens and reflected by a total internal reflection portion of the lens.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: August 19, 2003
    Assignee: Lumileds Lighting, U.S., LLC
    Inventors: Robert S. West, Gary D. Sasser, James W. Stewart
  • Patent number: 6604839
    Abstract: A light emitting device in accordance with an embodiment of the present invention includes a diffractive optical element, a first light emitting diode emitting first light having a first range of wavelengths, and a second light emitting diode emitting second light having a second range of wavelengths. The first light is directed onto the diffractive optical element at a first range of angles of incidence, and the second light is directed onto the diffractive optical element at a second range of angles of incidence. The diffractive optical element diffracts at least a portion of the first light and at least a portion of the second light into the same range of angles of diffraction to obtain light having a desired range of wavelengths. A light emitting device in accordance with an embodiment of the present invention can efficiently mix the outputs of two or more light emitting diodes to form a substantially uniform output of, for example, white light.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: August 12, 2003
    Assignee: Lumileds Lighting, U.S., LLC
    Inventors: Christopher L. Coleman, Robert H. Weissman
  • Patent number: 6603258
    Abstract: A white-light emitting diode (LED) is provided that emits primary light at a wavelength that is in the range of 485 to 515 nanometers (nm), which corresponds to a bluish-green color. A portion of the primary light is converted into a reddish-colored light that ranges in wavelength from approximately 600 to approximately 620 nm. At least a portion of the converted light combines with the unconverted portion of the primary light to produce white light. A number of phosphor-converting elements are suitable for use with the LED, including a resin admixed with a phosphor powder, epoxies admixed with a phosphor powder, organic luminescent dyes, phosphor-converting thin films and phosphor-converting substrates. Preferably, the phosphor-converting element is a resin admixed with a phosphor powder in such a manner that a portion of the primary light impinging on the resin is converted into the reddish-colored light and a portion of the primary light passes through the resin without being converted.
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: August 5, 2003
    Assignee: Lumileds Lighting, U.S. LLC
    Inventors: Regina Mueller-Mach, Gerd O. Mueller, Paul S. Martin
  • Patent number: 6598998
    Abstract: A lens mounted to a light emitting diode package internally redirects light within the lens so that a majority of light is emitted from the lens approximately perpendicular to a package axis of the light emitting diode package. In one embodiment, the light emitted by the light emitting diode package is refracted by a sawtooth portion of the lens and reflected by a total internal reflection portion of the lens.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: July 29, 2003
    Assignee: Lumileds Lighting, U.S., LLC
    Inventors: Robert S. West, Gary D. Sasser, James W. Stewart
  • Patent number: 6593160
    Abstract: A solderable light-emitting diode (LED) chip and a method of fabricating an LED lamp embodying the LED chip utilize a diffusion barrier that appreciably blocks molecular migration between two different layers of the LED chip during high temperature processes. In the preferred embodiment, the two different layers of the LED chip are a back reflector and a solder layer. The prevention of intermixing of the materials in the back reflector and the solder layer impedes degradation of the back reflector with respect to its ability to reflect light emitted by the LED. The LED chip includes a high power AlInGaP LED or other type of LED, a back reflector, a diffusion barrier and a solder layer. Preferably, the back reflector is composed of silver (Ag) or Ag alloy and the solder layer is made of indium (In), lead (Pb), gold (Au), tin (Sn), or their alloy and eutectics. In a first embodiment, the diffusion layer is made of nickel (Ni) or nickel-vanadium (NiV).
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: July 15, 2003
    Assignee: Lumileds Lighting, U.S., LLC
    Inventors: Carrie Carter-Coman, Gloria Hofler, Fred A. Kish, Jr.
  • Patent number: 6590235
    Abstract: An LED component is provided, with light emission in the green-to-near UV wavelength range. The light-emitting semiconductor die is encapsulated with one or more silicone compounds, including a hard outer shell, an interior gel or resilient layer, or both. The silicone material is stable over temperature and humidity ranges, and over exposure to ambient UV radiation. As a consequence, the LED component has an advantageously long lifetime, in which it is free of “yellowing” attenuation which would reduce the green-to-near UV light output.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: July 8, 2003
    Assignee: Lumileds Lighting, U.S., LLC
    Inventors: Julian A. Carey, Williams David Collins, III, Jason L. Posselt
  • Patent number: 6576488
    Abstract: Presented is a method of conformally coating a light emitting semiconductor structure with a phosphor layer to produce a substantially uniform white light. A light emitting semiconductor structure is coupled to a submount, a first bias voltage is applied to the submount, and a second bias voltage is applied to a solution of charged phosphor particles. The charged phosphor particles deposit on the conductive surfaces of the light emitting semiconductor structure. If the light emitting semiconductor structure includes a nonconductive substrate, the light emitting semiconductor structure is coated with an electroconductive material to induce phosphor deposition. The electrophoretic deposition of the phosphor particles creates a phosphor layer of uniform thickness that produces uniform white light without colored rings.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: June 10, 2003
    Assignee: Lumileds Lighting U.S., LLC
    Inventors: William David Collins, III, Michael R. Krames, Godefridus Johannes Verhoeckx, Nicolaas Joseph Martin van Leth
  • Patent number: 6576932
    Abstract: LEDs employing a III-Nitride light emitting active region deposited on a base layer above a substrate show improved optical properties with the base layer grown on an intentionally misaligned substrate with a thickness greater than 3.5 &mgr;m. Improved brightness, improved quantum efficiency, and a reduction in the current at which maximum quantum efficiency occurs are among the improved optical properties resulting from use of a misaligned substrate and a thick base layer. Illustrative examples are given of misalignment angles in the range from 0.05° to 0.50°, and base layers in the range from 6.5 to 9.5 &mgr;m although larger values of both misalignment angle and base layer thickness can be used. In some cases, the use of thicker base layers provides sufficient structural support to allow the substrate to be removed from the device entirely.
    Type: Grant
    Filed: March 1, 2001
    Date of Patent: June 10, 2003
    Assignee: Lumileds Lighting, U.S., LLC
    Inventors: Reena Khare, Werner K. Goetz, Michael D. Camras
  • Patent number: 6573537
    Abstract: An inverted III-nitride light-emitting device (LED) with highly reflective ohmic contacts includes n- and p-electrode metallizations that are opaque, highly reflective, and provide excellent current spreading. The n- and p-electrodes each absorb less than 25% of incident light per pass at the peak emission wavelength of the LED active region.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: June 3, 2003
    Assignee: Lumileds Lighting, U.S., LLC
    Inventors: Daniel A. Steigerwald, Steven D. Lester, Jonathan J. Wierer, Jr.
  • Patent number: 6569704
    Abstract: An optical semiconductor device having a plurality of GaN-based semiconductor layers containing a strained quantum well layer in which the strained quantum well layer has a piezoelectric field that depends on the orientation of the strained quantum well layer when the quantum layer is grown. In the present invention, the strained quantum well layer is grown with an orientation at which the piezoelectric field is less than the maximum value of the piezoelectric field strength as a function of the orientation. In devices having GaN-based semiconductor layers with a wurtzite crystal structure, the growth orientation of the strained quantum well layer is tilted at least 1° from the {0001} direction of the wurtzite crystal structure. In devices having GaN-based semiconductor layers with a zincblende crystal structure, the growth orientation of the strained quantum well layer is tilted at least 1° from the {111} direction of the zincblende crystal structure.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: May 27, 2003
    Assignee: Lumileds Lighting U.S., LLC
    Inventors: Tetsuya Takeuchi, Norihide Yamada, Hiroshi Amano, Isamu Akasaki
  • Patent number: 6554451
    Abstract: A luminaire comprising a set of light sources, in particular LEDs, which are arranged predominantly in a first plane, and a set of substantially identical optical sources arranged predominantly in a second plane extending parallel to the first plane. The position of one of the light sources with respect to an optical clement opposite said light source differs from the position of a further light source with respect to an optical element opposite said light source.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: April 29, 2003
    Assignee: Lumileds Lighting U.S., LLC
    Inventor: Matthijs H. Keuper
  • Patent number: 6547249
    Abstract: Series or parallel LED arrays are formed on a highly resistive substrate, such that both the p- and n-contacts for the array are on the same side of the array. The individual LEDs are electrically isolated from each other by trenches or by ion implantation. Interconnects deposited on the array connects the contacts of the individual LEDs in the array. In some embodiments, the LEDs are III-nitride devices formed on sapphire substrates. In one embodiment, two LEDs formed on a single substrate are connected in antiparallel to form a monolithic electrostatic discharge protection circuit. In one embodiment, multiple LEDs formed on a single substrate are connected in series . In one embodiment, multiple LEDs formed on a single substrate are connected in parallel. In some embodiments, a layer of phosphor covers a portion of the substrate on which one or more individual LEDs is formed.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: April 15, 2003
    Assignee: Lumileds Lighting U.S., LLC
    Inventors: William David Collins, III, Jerome Chandra Bhat, Daniel Alexander Steigerwald
  • Patent number: 6534791
    Abstract: A nitride semiconductor epitaxial substrate includes a low-temperature-deposited buffer layer, the composition of which is AlxGa1−xN, where 0≦x≦1, and a single crystalline layer, the composition of which is AlyGa1−yN, where 0>y≦1. The single crystalline layer is deposited directly over the low-temperature-deposited buffer layer, wherein the buffer layer has a mole fraction x satisfying (y−0.3)≦x>y.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: March 18, 2003
    Assignee: Lumileds Lighting U.S., LLC
    Inventors: Nobuaki Hayashi, Tetsuya Takeuchi, Hiroshi Amano, Isamu Akasaki
  • Patent number: 6526082
    Abstract: A light-generating device such as a laser or LED. A light-generating device according to the present invention includes a first n-electrode layer in contact with a first n-contact layer, the first n-contact layer including an n-doped semiconductor. Light is generated by the recombination of holes and electrons in an n-p active layer. The n-p active layer includes a first p-doped layer in contact with a first n-doped layer, the first n-doped layer being connected electrically with the first n-contact layer. A p-n reverse-biased tunnel diode constructed from a second p-doped layer in contact with a second n-doped layer is connected electrically such that the second p-doped layer is connected electrically with the first p-layer. A second n-contact layer constructed from an n-doped semiconductor material is connected electrically to the second n-doped layer. A second n-electrode layer is placed in contact with the second n-contact layer.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: February 25, 2003
    Assignee: Lumileds Lighting U.S., LLC
    Inventors: Scott W. Corzine, Richard P. Schneider, Jr., Ghulam Hasnain
  • Patent number: 6504171
    Abstract: A light emitting device and a method of increasing the light output of the device utilize a chirped multi-well active region to increase the probability of radiative recombination of electrons and holes within the light emitting active layers of the active region by altering the electron and hole distribution profiles within the light emitting active layers of the active region (i.e., across the active region). The chirped multi-well active region produces a higher and more uniform distribution of electrons and holes throughout the active region of the device by substantially offsetting carrier diffusion effects caused by differences in electron and hole mobility by using complementary differences in layer thickness and/or layer composition within the active region.
    Type: Grant
    Filed: January 24, 2000
    Date of Patent: January 7, 2003
    Assignee: Lumileds Lighting, U.S., LLC
    Inventors: Patrick N. Grillot, Christopher P. Kocot, Michael R. Krames, Eugene I. Chen, Stephen A. Stockman, Ying-Lan Chang, Robert C. Taber
  • Patent number: 6504301
    Abstract: An LED package and a method of fabricating the LED package utilize a prefabricated fluorescent member that contains a fluorescent material that can be separately tested for optical properties before assembly to ensure the proper performance of the LED package with respect to the color of the output light. The LED package includes one or more LED dies that operate as the light source of the package. Preferably, the fluorescent material included in the prefabricated fluorescent member and the LED dies of the LED package are selectively chosen, so that output light generated by the LED package duplicates natural white light. In a first embodiment of the invention, the prefabricated fluorescent member is a substantially planar plate having a disk-like shape. In a second embodiment, the prefabricated fluorescent member is a non-planar disk that conforms to and is attached to the inner surface of a concave lens.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: January 7, 2003
    Assignee: LumiLeds Lighting, U.S., LLC
    Inventor: Christopher H. Lowery
  • Patent number: 6492725
    Abstract: A concentrically leaded power semiconductor package includes two or more generally concentric conductors. An inner conductor may provide an attachment point for one or more semiconductor devices at an end of the inner conductor and an electrical connection at an opposite end. An outer conductor may be pressed onto the inner conductor and may be separated by an electrical insulator. A semiconductor device, such as a light emitting diode (LED), may be attached to the inner conductor by epoxy gluing or by soldering, and may be attached to the outer conductor by a bonding wire. The package may be cylindrical or a rectangular solid. The package may incorporate additional semiconductor mounting surfaces and more than two conductors.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: December 10, 2002
    Assignee: Lumileds Lighting, U.S., LLC
    Inventors: Ban Poh Loh, Douglas P. Woolverton, Wayne L. Snyder
  • Patent number: 6307218
    Abstract: A light emitting device includes a heterojunction having a p-type layer and an n-type layer. The n-electrode is electrically connected to the n-type layer while the p-electrode is electrically connected to the p-type layer. The p and n-electrodes are positioned to form a region having uniform light intensity.
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: October 23, 2001
    Assignee: LumiLeds Lighting, U.S., LLC
    Inventors: Daniel A. Steigerwald, Serge L Rudaz, Kyle J. Thomas, Steven D. Lester, Paul S. Martin, William R. Imler, Robert M. Fletcher, Fred A. Kish, Jr., Steven A. Maranowski
  • Patent number: 6280523
    Abstract: Light emitting devices having a vertical optical path, e.g. a vertical cavity surface emitting laser or a resonant cavity light emitting or detecting device, having high quality mirrors may be achieved using wafer bonding or metallic soldering techniques. The light emitting region interposes one or two reflector stacks containing dielectric distributed Bragg reflectors (DBRs). The dielectric DBRs may be deposited or attached to the light emitting device. A host substrate of GaP, GaAs, InP, or Si is attached to one of the dielectric DBRs. Electrical contacts are added to the light emitting device.
    Type: Grant
    Filed: February 5, 1999
    Date of Patent: August 28, 2001
    Assignee: LumiLeds Lighting, U.S., LLC
    Inventors: Carrie Carter Coman, Fred A. Kish, Jr., R. Scott Kern, Michael R. Krames, Paul S. Martin
  • Patent number: 6258614
    Abstract: A device with a low resistance zone having confinement, superior reproducibility, and a very high yield comprises a plurality of semiconductor layers, wherein layer resistivity is changed by annealing. The semiconductor layers include a resistance zone having a high activation coefficient of acceptor impurities and a resistance region having a low activation coefficient of acceptor impurities. The activation coefficient is controlled by irradiation with laser light. In addition, laser light is irradiated and absorbed into the semiconductor layers in one part of, or the entire, semiconductor layers, such that layer resistivity in the irradiated regions is changed by annealing resulting from such irradiation.
    Type: Grant
    Filed: November 26, 1997
    Date of Patent: July 10, 2001
    Assignee: LumiLeds Lighting, U.S., LLC
    Inventor: Yawara Kaneko