Patents Represented by Attorney, Agent or Law Firm Rauschenbach Patent Law Group
  • Patent number: 7609935
    Abstract: An optical vector modulator includes an information generator that generates a plurality of N-bit streams at an output where each of the plurality of N-bit streams represents a desired modulation point in a signaling constellation. A memory look-up table having an N-bit address input retrieves a first and a second stored value that corresponds to the N-bit address input, where each of the first and the second stored value represent a respective one of a first and a second modulation vector of a desired modulation point in the signaling constellation. A first and a second digital-to-analog converter generates first and second analog signals, respectively, that correspond to respective ones of the first and second modulation vectors of the desired modulation points in the signaling constellation. A dual-drive interferometric modulator modulates the first and the second analog signals on the optical beam to obtain the desired modulation points in the signaling constellation.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: October 27, 2009
    Assignee: BBN Technologies
    Inventor: Jerry D. Burchfiel
  • Patent number: 7604716
    Abstract: Methods and apparatus for generating a strongly-ionized plasma are described. An apparatus for generating a strongly-ionized plasma according to the present invention includes an anode and a cathode that is positioned adjacent to the anode to form a gap there between. An ionization source generates a weakly-ionized plasma proximate to the cathode. A power supply produces an electric field in the gap between the anode and the cathode. The electric field generates excited atoms in the weakly-ionized plasma and generates secondary electrons from the cathode. The secondary electrons ionize the excited atoms, thereby creating the strongly-ionized plasma.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: October 20, 2009
    Assignee: Zond, Inc.
    Inventor: Roman Chistyakov
  • Patent number: 7593608
    Abstract: In an optical communications link, an optical system including: at least a first input port for delivering an optical signal travelling in the communications link, the optical signal including a plurality of wavelength channels, the channels being utilized for carrying optical information over an optical data link; a dispersive element for spatially separating the wavelength channels; an active optical-phase element; and a plurality of optical manipulation elements for directing the spatially separated channels between the dispersive element and the optical phase element wherein, the optical phase element independently modifies the phase of predetermined ones of the wavelength channel in a predetermined and decoupled manner for substantial compensation of signal degradation effects imparted to the wavelength channels by said communications link.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: September 22, 2009
    Assignee: Finisar Corporation
    Inventor: Steven J. Frisken
  • Patent number: 7589319
    Abstract: Many applications in the study of metabolics and proteomics require measurements on peptides and small molecules with high resolving power and mass accuracy. These are often present in complex mixtures and sensitivity over a relatively broad mass range, speed of analysis, reliability, and ease of use are very important. The present invention is a time-of-flight mass spectrometer providing optimum performance for these and similar applications.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: September 15, 2009
    Assignee: Virgin Instruments Corporation
    Inventor: Marvin L. Vestal
  • Patent number: 7572208
    Abstract: A climbing wall includes a frame with a guiding channel. A plurality of panels slide in the guiding channel and present a climbing surface with protrusions for climbing. The frame includes a section where the plurality of panels pivot out of the guiding channel when loaded with a climber's weight. An actuator is engaged by torque generated when one of the plurality of panels pivots out of the guiding channel. A braking mechanism is coupled to the actuator. The braking mechanism applies an arresting force to the plurality of panels when the actuator is engaged.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: August 11, 2009
    Assignee: Brewer's Ledge, Inc.
    Inventor: George W. Brewer
  • Patent number: 7564028
    Abstract: The present invention is directed to ion source and vacuum housings for use in MALDI-TOF mass spectrometry which operates with any type of mass analyzer including linear, reflector, or tandem TOF-TOF instruments. By removing the requirement for the vacuum lock, the present invention allows operation of the ion source vacuum chamber at a pressure at least two orders of magnitude higher than conventional instruments. The present invention also requires only a single valve that isolates the ion source vacuum housing from the TOF analyzer vacuum housing. This is a significant improvement over vacuum locks in the art where the valve opening must be sufficiently large to allow the sample plate to pass through.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: July 21, 2009
    Assignee: Virgin Instruments Corporation
    Inventor: Marvin L. Vestal
  • Patent number: 7564026
    Abstract: The present invention provides a time-of-flight (TOF) mass analyzer. The system includes an analyzer vacuum housing isolated from the evacuated ion source vacuum housing by a gate valve maintained at ground potential. A pulsed ion source is located within the ion source housing, and the gate valve is located in a first field-free region at ground potential. A second field-free drift space within the analyzer housing is biased at high voltage with opposite polarity to the voltage applied to the pulsed ion source. Novel ion detectors are provided with input surfaces in electrical contact with the second field-free drift space with output connected to an external digitizer at ground potential.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: July 21, 2009
    Assignee: Virgin Instruments Corporation
    Inventor: Marvin L. Vestal
  • Patent number: 7561809
    Abstract: An integrated laser device includes a pre-distortion circuit. The pre-distortion circuit receives an electrical modulation signal and generates a pre-distorted modulation signal. A laser is integral with the pre-distortion circuit. The laser includes an electrical modulation input that is connected to the output of the pre-distortion circuit. The laser modulates an optical signal with the pre-distorted modulation signal. The pre-distorted modulation signal causes at least some vector cancellation of distortion signals generated when the laser modulates the optical signal.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: July 14, 2009
    Assignee: Finisar Corporation
    Inventors: Thomas R. Frederiksen, Jr., Stephen B. Krasulick
  • Patent number: 7561803
    Abstract: A signal interface comprises a non-reciprocal device having a first port that accepts a first electrical signal and a second port that accepts a second electrical signal. The non-reciprocal device passes the second electrical signal through the first port without a phase shift and passes the first electrical signal through the second port with a 180 degrees phase shift. An optical modulator receives an optical signal at an optical input port, a second signal at a first and a second electrical input port, the first electrical signal at a third electrical input port, and the phase-shifted first electrical signal from the non-reciprocal device at a fourth electrical input port. The optical modulator transmits the second electrical signal to the first port of the non-reciprocal device without a phase shift and modulates the first electrical signal on the optical signal and providing the modulated optical signal at an optical output port of the optical modulator.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: July 14, 2009
    Assignee: Photonic Systems, Inc.
    Inventors: William K. Burns, Charles H. Cox, III, Rod Waterhouse
  • Patent number: 7555219
    Abstract: A bi-directional signal interface includes a first waveguide that propagates a first traveling wave. The first waveguide has one end that is coupled to a RF input port that receives a RF transmission signal and another end that is coupled to a RF bi-directional port that receives a RF reception signal and that transmits the RF transmission signal. A second waveguide is positioned proximate to the first waveguide. The second waveguide has one end that is coupled to an output port that passes the received RF reception signal. A non-reciprocal coupler couples fields from the first waveguide to the second waveguide so that the RF reception signal from the bi-directional port couples from the first waveguide to the second waveguide in a substantially non-reciprocal manner and then passes through the output port, and the RF transmission signal from the RF input port passes through the first waveguide to the RF bi-directional port.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: June 30, 2009
    Assignee: Photonic Systems, Inc.
    Inventors: Charles Cox, Ed Ackerman
  • Patent number: 7528365
    Abstract: In various aspects, the present teachings provide systems and methods for reducing chemical noise in a mass spectrometry instrument that use a neutral chemical reagent and one or more mass filters to reduce interfering chemical background ion signals that are generated by ionization sources of mass spectrometers. In various embodiments, the neutral chemical reagent belongs to the class of organic chemical species containing a disulfide functionality.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: May 5, 2009
    Assignees: Applera Corporation, MDS Inc.
    Inventors: Xinghua Guo, Andries P. Bruins, Tom Covey
  • Patent number: 7513058
    Abstract: A construction rule tape and a construction layout tool include a non-metallic material that conforms to a construction surface. The non-metallic material includes graduations that correspond to a combined thickness of at least one of a gap and an adhesive material used to secure the construction unit to other construction units and to the construction surface.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: April 7, 2009
    Inventor: Michael Cahalane
  • Patent number: 7491931
    Abstract: In various aspects, ion sources, mass spectrometer systems, and a power supply circuit coupled to a feedback circuit are provided. A power supply is provided that includes at least the power supply circuit and is operable to transfer charge to a load. The feedback circuit is responsive to a DC component of an output voltage supplied by the power supply in a first feedback loop and an AC component of the output voltage in a second feedback loop to produce a feedback signal representative of at least one of: a value of the output voltage before a charge transfer from a capacitor of the power supply to a load; the value of the output voltage during the charge transfer from the capacitor of the power supply to the load; or the value of the output voltage after the charge transfer from the capacitor of the power supply to the load.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: February 17, 2009
    Assignees: Applera Corporation, MDS Inc. MDS Sciex Division
    Inventor: Stephen C. Gabeler
  • Patent number: 7462826
    Abstract: An apparatus and method for performing mass spectroscopy uses an ion interface to provide the function of removing undesirable particulates from an ion stream from an atmospheric pressure ion source, such as an electrospray source or a MALDI source, before the ion stream enters a vacuum chamber containing the mass spectrometer. The ion interface includes an entrance cell with a bore that may be heated for desolvating charged droplets when the ion source is an electrospray source, and a particle discrimination cell with a bore disposed downstream of the bore of the entrance cell and before an aperture leading to the vacuum chamber. The particle discrimination cell creates gas dynamic and electric field conditions that enables separation of undesirable charged particulates from the ion stream.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: December 9, 2008
    Assignee: MDS Sciex
    Inventors: Bradley Schneider, Thomas R. Covey
  • Patent number: 7457547
    Abstract: In an optical system including an optical input port for projecting an input optical signal onto an optical phased matrix array, an optical phased matrix array including a plurality of individually addressable pixels thereon, each said pixel being drivable within a prescribed range of levels, and an optical output port for collecting a predetermined fraction of said optical signal received from said optical phased matrix array; a method of compensating for phase distortions including the steps of: (a) determining a plurality of transfer functions relating said level of each said pixel to the phase variation each said pixel introduces to light from said input optical signal which is incident thereon; and (b) controlling the level of selected ones of said pixels in accordance with a corresponding transfer function such that said fractional signal received at said output port is modified in phase to substantially compensate for optical phase distortions arising from said optical phased matrix array.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: November 25, 2008
    Assignee: Optium Australia Pty Limited
    Inventors: Steven J. Frisken, Glenn W. Baxter, Hao Zhou, Dmitri Abakoumov
  • Patent number: 7446479
    Abstract: The present invention relates to a plasma source. The plasma source includes a cathode assembly having an inner cathode section and an outer cathode section. An anode is positioned adjacent to the outer cathode section so as to form a gap there between. A first power supply generates a first electric field across the gap between the anode and the outer cathode section. The first electric field ionizes a volume of feed gas that is located in the gap, thereby generating an initial plasma. A second power supply generates a second electric field proximate to the inner cathode section. The second electric field super-ionizes the initial plasma to generate a plasma comprising a higher density of ions than the initial plasma.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: November 4, 2008
    Assignee: Zond, Inc.
    Inventor: Roman Chistyakov
  • Patent number: 7447401
    Abstract: In an optical communications link, an optical system including: at least a first input port for delivering an optical signal travelling in the communications link, the optical signal including a plurality of wavelength channels, the channels being utilized for carrying optical information over an optical data link; a dispersive element for spatially separating the wavelength channels; an active optical-phase element; and a plurality of optical manipulation elements for directing the spatially separated channels between the dispersive element and the optical phase element wherein, the optical phase element independently modifies the phase of predetermined ones of the wavelength channel in a predetermined and decoupled manner for substantial compensation of signal degradation effects imparted to the wavelength channels by said communications link.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: November 4, 2008
    Assignee: Optium Australia PTY Limited
    Inventor: Steven J. Frisken
  • Patent number: 7425713
    Abstract: A multi-beam synchronous raster scanning lithography system includes a processor that generates electrical signals representing a desired exposure pattern at an output. A multi-beam source of exposing radiation generates a plurality of exposure beam. A beam modulator receives the electrical signals generated by the processor and modulates the plurality of exposing beams according to the desired exposure pattern. A beam deflector deflects the plurality of exposure beams by a predetermined distance along a first axis, thereby exposing a plurality of pixels along the first axis with the desired exposure pattern. A translation stage moves the substrate a predetermined distance along a second axis to position the substrate for a subsequent exposure of pixels along the first axis that results in a desired overlapping exposure dose profile.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: September 16, 2008
    Assignee: Arradiance, Inc.
    Inventor: David Beaulieu
  • Patent number: 7408142
    Abstract: A microchannel amplifier includes an insulating substrate that defines at least one microchannel pore through the substrate from an input surface to an output surface. A conductive layer is formed on an outer surface of the at least one microchannel pore that has a non-uniform resistance as a function of distance through the at least one microchannel pore. The non-uniform resistance is selected to simulate saturation by reducing gain as a function of input current and bias voltage compared with uniform resistance. A first and second electrode is deposited on a respective one of the input and the output surfaces of the insulating substrate. The microchannel amplifier amplifying emissions propagating through the at least one microchannel pore when the first and second electrodes are biased.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: August 5, 2008
    Assignee: Arradiance, Inc.
    Inventors: David R. Beaulieu, Harry F. Lockwood, Anton S. Tremsin
  • Patent number: 7405397
    Abstract: A laser desorption ion source provides enhanced ion sampling efficiency and measurement sensitivity by using one or more ion guides to effectively capture ions in a plume emitted from the ion target and guide the ions through an aperture into a downstream vacuum chamber. In one configuration using two RF multipole ion guides, a first RF multipole ion guide disposed next to the ion target is selected to be sufficiently large to capture a substantial portion of the plume, while the second RF multipole ion guide disposed between the first multipole ion guide and the aperture has a smaller dimension to assist focusing of ions into the aperture. The first RF multipole ion guides the ions in the plume into the second RF multipole ion guide, which then focuses the ions so that they pass through the aperture into the downstream vacuum chamber.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: July 29, 2008
    Assignee: MDS Sciex Inc.
    Inventors: Thomas R. Covey, Hassan Javaheri, Bradley B. Schneider