Patents Represented by Attorney Raymond A. Bogucki
  • Patent number: 8150227
    Abstract: Composite fiber optic cables having exposed, conductive traces external to the cable jacket enable non-invasive, wireless electrical tone tracing of fiber optic cables. The cross sectional geometry of the fiber optic cable prevents conductive traces from short circuiting when abutting other cables or grounded conductive elements. Moreover, the structure allows convenient electrical contact to the conductive traces at any location along the longitudinal extent of the cable without requiring penetration of the cable jacket or removal of fiber optic connectors. Traceable fiber optic cables of various types are disclosed, including simplex, duplex and ribbon cables. Systems of traceable cables utilizing connectors with integrated electrical antenna elements attached to the conductive elements of cable and RFID tags for remote connector port identification are further disclosed.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: April 3, 2012
    Assignee: Telescent Inc.
    Inventor: Anhony Stephen Kewitsch
  • Patent number: 8068715
    Abstract: This invention discloses highly scalable and modular automated optical cross connect switch devices which exhibit low loss and scalability to high port counts. In particular, a device for the programmable interconnection of large numbers of optical fibers (100's-1000's) is provided, whereby a two-dimensional array of fiber optic connections is mapped in an ordered and rule-based fashion into a one-dimensional array with tensioned fiber optic circuit elements tracing substantially straight lines there between. Fiber optic elements are terminated in a stacked arrangement of flexible fiber optic circuit elements with a capacity to retain excess fiber lengths while maintaining an adequate bend radius. The combination of these elements partitions the switch volume into multiple independent, non-interfering zones, which retain their independence for arbitrary and unlimited numbers of reconfigurations.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: November 29, 2011
    Assignee: Telescent Inc.
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 7665901
    Abstract: Devices to enhance the reliability of optical networks and to reduce the cost of repair are disclosed in this invention. In particular, compact and inexpensive fiber optic union adapters with built-in protective isolation prevent the transfer of damage from one connectorized fiber optic cable to another. The fiber optic union includes a split sleeve with an interior channel and a fiber stub centrally located within the interior channel. The fiber stub makes direct optical contact with the cable endfaces to enable efficient optical transmission between interconnected cables while providing a low loss, low back reflection adiabatic transition between the waveguide cores of the two cables.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: February 23, 2010
    Assignee: Telescent Inc.
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 7460753
    Abstract: In accordance with this invention, fiber optic cables are provided whose shape may be formed and retained while maintaining a limited bend radius. These features are produced by incorporating a compact compliant internal cable member into the cable structure. The compliant internal member consists not only of the fiber optic cable, but also of ductile and non-ductile elements. The ductile element is advantageously a tube or a wire which readily deforms to retain a given shape, and may be reshaped if desired. The non-ductile element, which resists sharp bending of the cable during shaping, comprises a substantially non-ductile elongated element disposed within the cable and configured to oppose excessively sharp bending along its length. Proper selection of the cross-sections and materials used in these elongated members produces a proper balance between shape retention and bending radius.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: December 2, 2008
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 7315681
    Abstract: In this invention, a fiber optic rotary joint and applications of such to retractable fiber optic cables is described. The fiber optic rotary joint consists of a spiral arrangement of a spring and optical fiber pair placed between rotating inner and outer diameters. The fiber optic rotary joint provides a finite number of turns of a fiber optic cable about a primary axis. These turns can be used, for example, with a rotating spool to provide a continuous retractable and extendable cable.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: January 1, 2008
    Inventor: Anthony Kewitsch
  • Patent number: 7289197
    Abstract: In this invention, a transmissive optical detector for low loss monitoring of transmitted optical power is described. The optical detector consists of a partially absorbing coating whose electrical characteristics change under illumination while letting most of the optical power pass through unperturbed. The coating is, for example, a transparent conductor such as indium tin oxide coated on the endface of a fiberoptic waveguide.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: October 30, 2007
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 6760275
    Abstract: A system and method in accordance with the invention communicator remotely with remotely controllable down hole tools in a well bore at a drilling installation. At the surface, high energy pressure impulses directed into the tubing or the annulus, or both, being at a level to propagate through an interface between very different impedances zones, such as an upper level gas zone and a lower level of mobile fluid media extending down into the desired downhole location. The pressure impulses, provided by directionally gating along the longitudinal confining path a pressure impulse initially having sharp leading and trailing edges, reach the downhole location as physical perturbations forming a discernible pattern that can be detected by one or more energy responsive transducers. With combinations of these signals, one of a number of separate control devices can be remotely actuated.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: July 6, 2004
    Inventor: Kenneth J. Carstensen
  • Patent number: 6499535
    Abstract: A temperature control unit for independent control of a number of independent channels, as can exist with a cluster tool used for semiconductor fabrication, has high efficiency, long term life and reliability, and requires only a small floor area. To these ends, the unit employs a single high capacity refrigeration system and disposes a number of separate temperature control channels for the individual tools, with only some channels receiving refrigerant. Low temperature channels use high pressure, sub-cooled refrigerant for chilling the heat transfer fluid to selected levels controlled by proportional valves adjusting refrigerant flow through evaporator heat exchanger units which cool heat transfer fluid. Moderate temperature channels cool the heat transfer fluid for associated tools to an ambient temperature level.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: December 31, 2002
    Assignee: B/E Aerospace
    Inventor: Kenneth W. Cowans
  • Patent number: 6446446
    Abstract: A system and method for controlling the temperature of thermal loads which might be controlled by refrigeration at any temperature within a wide range from −40° C. to +120° C. employs a refrigeration loop with pressure and temperature sensitive shunt paths to provide stabilized refrigerant flow so that a thermal expansion valve can operate stably only with liquid refrigerant inputs. For efficiency, thermal energy is interchanged between refrigerant returning from thermal energy exchange with a thermal load such as a cluster tool used in semiconductor fabrication and counterflow pressurized liquid refrigerant that is to be expanded for heat exchange. If the input in a suction line to the compressor is too high in temperature, a portion of pressurized refrigerant for the thermal expansion valve that is being subcooled prior to feeding to the valve is diverted into counterflow relationship with the subcooling exchange.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: September 10, 2002
    Assignee: Advanced Thermal Sciences Corp.
    Inventor: William W. Cowans
  • Patent number: 6390584
    Abstract: A system for aligning labels on label stock of different sizes with the print head in a printer is disclosed. The label stock is wound around a tubular core, which has a ring shaped groove in its inner surface at the midpoint of its length, forming a roll of label stock. The continuous liner strip contains synchronization holes and identification holes. The system includes a printer having a spindle mounted on a pedestal and holding the roll of label stock to be fed into the printer. The spindle is undersized relative to the tubular core and includes a ring shaped protrusion at its midpoint for engaging the groove in the inner surface of the tubular core. This roll of label stock is automatically maintained centered on the midpoint of the spindle, by its own weight, as it turns around the spindle as the label stock advances. The system also includes an optical detector movably mounted within the printer, for detecting synchronization holes and identification holes in the liner during print head traversal.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: May 21, 2002
    Assignee: AMT Datasouth Corp.
    Inventors: Gregory Paul Larson, David Bryant
  • Patent number: 6388577
    Abstract: A system and method in accordance with the invention communicator remotely with remotely controllable down hole tools in a well bore at a drilling installation. At the surface, high energy pressure impulses directed into the tubing or the annulus, or both, being at a level to propagate through an interface between very different impedances zones, such as an upper level gas zone and a lower level of mobile fluid media extending down into the desired downhole location. The pressure impulses, provided by directionally gating along the longitudinal confining path a pressure impulse initially having sharp leading and trailing edges, reach the downhole location as physical perturbations forming a discernible pattern that can be detected by one or more energy responsive transducers. With combinations of these signals, one of a number of separate control devices can be remotely actuated.
    Type: Grant
    Filed: April 6, 1998
    Date of Patent: May 14, 2002
    Inventor: Kenneth J. Carstensen
  • Patent number: 6334074
    Abstract: A hand held applicator for delivery of microwave energy to skin surfaces is provided that is compact, easily manipulated, precisely positionable and secure against malfunction. Microwave energy of a chosen frequency is supplied for a given duration at a predetermined energy level, via one or more waveguides having a distal end section that is dielectrically loaded and matched to skin impedance. Positioning indicia may be disposed on a single use end cap adjacent the emitter end of the applicator to permit easy visualization by the surgeon or technician. Coolant, such as a pressurized gas refrigerant, is supplied in a burst to the skin surface via an interior solenoid controlled valve. The microwave energy pulse is initiated by control circuits after the effective delivery of coolant is sensed. The initiation of the cycle can be effected by actuation of a switch, movement of the applicator against the skin, or by tracking the movement of the applicator from one position to another.
    Type: Grant
    Filed: December 29, 1999
    Date of Patent: December 25, 2001
    Assignee: Microwave Medical Corp.
    Inventor: Robert B. Spertell
  • Patent number: 6247531
    Abstract: A temperature control unit for independent control of a number of independent channels, as can exist with a cluster tool used for semiconductor fabrication, has high efficiency, long term life and reliability, and requires only a small floor area. To these ends, the unit employs a single high capacity refrigeration system and disposes a number of separate temperature control channels for the individual tools, with only some channels receiving refrigerant. Low temperature channels use high pressure, sub-cooled refrigerant for chilling the heat transfer fluid to selected levels controlled by proportional valves adjusting refrigerant flow through evaporator heat exchanger units which cool heat transfer fluid. Moderate temperature channels cool the heat transfer fluid for associated tools to an ambient temperature level.
    Type: Grant
    Filed: July 18, 2000
    Date of Patent: June 19, 2001
    Assignee: B/E Aerospace
    Inventor: Kenneth W. Cowans
  • Patent number: 6209334
    Abstract: An arrangement is provided for insuring that excessive demand is not placed on a refrigeration unit that supplies pressurized subcooled refrigerant to different channels having independent needs for use of refrigeration capacity. A separate reference channel receives a portion of the refrigerant and expands the refrigerant fully to a gas phase to establish a minimum level reference temperature. In the operative channels the refrigerant flows into individual evaporators/heat exchangers at rates set by external command signals, the refrigerant being in heat exchange relation with thermal transfer fluid in the evaporator/heat exchanger. Evaporation of refrigerant in each channel thus brings the thermal transfer fluid for that channel to the target temperature. By comparing the post evaporation temperature in each channel to the reference temperature and reducing the refrigerant flow rate whenever the difference is below a threshold, individual channels are not overtaxed and the system remains stable.
    Type: Grant
    Filed: July 18, 2000
    Date of Patent: April 3, 2001
    Assignee: B/E Aerospace
    Inventors: Kenneth W. Cowans, Glenn Zubillaga
  • Patent number: 6149633
    Abstract: In a system which utilizes an endoscope and irrigation fluid during surgery within a body orifice, and in which irrigation fluid is withdrawn via a principal path into a suction canister, there is a substantially constant suction and withdrawal rate from the operative site to limit absorption of irrigation fluid within the patient, because a bifurcated flow path that leads to the suction canister not only from the endoscope but also from a drain bag receiving overflow from the body orifice via a tailored drape includes a substantially greater flow impedance in the drain bag path. The common suction line joined to the endoscope line and the drain bag line draws a flow through the endoscope that predominates, to maintain substantially constant withdrawal of irrigation fluid via that path, and substantially eliminates the possibility of loss of suction.
    Type: Grant
    Filed: June 19, 1998
    Date of Patent: November 21, 2000
    Assignee: Surgin Surgical Instrumentation, Inc.
    Inventor: Armand Maaskamp
  • Patent number: 6109047
    Abstract: An arrangement is provided for insuring that excessive demand is not placed on a refrigeration unit that supplies pressurized subcooled refrigerant to different channels having independent needs for use of refrigeration capacity. A separate reference channel receives a portion of the refrigerant and expands the refrigerant fully to a gas phase to establish a minimum level reference temperature. In the operative channels the refrigerant flows into individual evaporators/heat exchangers at rates set by external command signals, the refrigerant being in heat exchange relation with thermal transfer fluid in the evaporator/heat exchanger. Evaporation of refrigerant in each channel thus brings the thermal transfer fluid for that channel to the target temperature. By comparing the post evaporation temperature in each channel to the reference temperature, and reducing the refrigerant flow rate whenever the difference is below a threshold, individual channels are not overtaxed and the system remains stable.
    Type: Grant
    Filed: April 15, 1998
    Date of Patent: August 29, 2000
    Assignee: B/E Aerospace
    Inventors: Kenneth W. Cowans, Glenn Zubillaga
  • Patent number: 6102113
    Abstract: A temperature control unit for independent control of a number of independent channels, as can exist with a cluster tool used for semiconductor fabrication, has high efficiency, long term life and reliability, and requires only a small floor area. To these ends, the unit employs a single high capacity refrigeration system and disposes a number of separate temperature control channels for the individual tools, with only some channels receiving refrigerant. Low temperature channels use high pressure, sub-cooled refrigerant for chilling the heat transfer fluid to selected levels controlled by proportional valves adjusting refrigerant flow through evaporator heat exchanger units which cool heat transfer fluid. Moderate temperature channels cool the heat transfer fluid for associated tools to an ambient temperature level.
    Type: Grant
    Filed: September 16, 1997
    Date of Patent: August 15, 2000
    Assignee: B/E Aerospace
    Inventor: Kenneth W. Cowans
  • Patent number: 6104959
    Abstract: A system and method for treating subcutaneous histological features without affecting adjacent tissues adversely employs microwave energy of selected power, frequency and duration to penetrate subcutaneous tissue and heat target areas with optimum doses to permanently affect the undesirable features. The frequency chosen preferentially interacts with the target as opposed to adjacent tissue, and the microwave energy is delivered as a short pulse causing minimal discomfort and side effects. By distributing microwave energy at the skin over an area and adjusting power and frequency, different conditions, such as hirsuitism and telangiectasia, can be effectively treated.
    Type: Grant
    Filed: July 31, 1997
    Date of Patent: August 15, 2000
    Assignee: Microwave Medical Corp.
    Inventor: Robert Bruce Spertell
  • Patent number: 5993409
    Abstract: A surgical needle for use in phaco-emulsification procedures during eye surgery is disclosed. The surgical needle comprises a tubular principal section substantially concentric about a longitudinal principal axis and a tubular terminal section for channeling aspiration flow away from the surgical site. The terminal section is angled with respect to the principal section to access a greater area of the surgical site. The angled terminal section also presents an angled side face to the reciprocating motion when the surgical needle is reciprocated along the principal axis, causing increased cavitational emulsification. An aspiration bore at an extreme distal end of the terminal receives the aspiration flow. The aspiration bore has two planar end faces, one to minimize the possibility of accidental tearing of eye tissue, and the other to open up the aspiration bore to the direction of reciprocation and maximize the occlusion and mechanical cavitation of material.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: November 30, 1999
    Assignee: Surgin Surgical Instrumentation, Inc.
    Inventor: Armand Maaskamp
  • Patent number: 5282787
    Abstract: A system for controlling the irrigation and aspiration functions in flow lines cooperative with a surgical control console employs separate interacting cooperative units for the segregation of different functions in units employed in different ways. A receiver unit is configured to fit within a cassette receptacle in a console but does not perform any function apart from transferring forces with internal slider bars. The receiver accepts a slidable adapter which in turn receives a small disposable cassette that provides some internal irrigation and aspiration lines, and an external aspiration line that is separately threadable through the adapter unit to cooperate with a peristaltic pump in the console.
    Type: Grant
    Filed: November 13, 1992
    Date of Patent: February 1, 1994
    Assignee: Surgin Surgical Instrumentation, Inc.
    Inventor: Theodore S. Wortrich