Patents Represented by Attorney Raymond F. Keller
  • Patent number: 7118717
    Abstract: Provided are improved carbon monoxide removal articles and processes for treating hydrogen gas streams to achieve very low threshold levels of carbon monoxide. The articles have a substrate with an inlet end, an outlet end, a length extending between the inlet end to the outlet end, wall elements and a plurality of cells defined by the wall elements. A first layer is deposited on the wall elements from the inlet end and extending at least partially toward the outlet end. The first layer has a preferential carbon monoxide oxidation catalyst. A second layer contains a methanation catalyst, and is deposited on at least part of the first layer from the outlet end. The second layer has a length that is about 10–70% of the substrate length.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: October 10, 2006
    Assignee: Engelhard Corporation
    Inventor: Lawrence Shore
  • Patent number: 7074375
    Abstract: A hydrocarbon gas such as methane and LPG is desulfurized in the presence of oxygen and an oxidation catalyst to convert sulfur compounds in the gas to sulfur oxides. The sulfur oxides are then trapped downstream of the oxidation by an adsorbent. The amount of oxygen added to the hydrocarbon gas to promote oxidation is such that the sulfur compounds are selectively oxidized and the oxidation of the hydrocarbon gas is minimized to reduce hydrogen formation.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: July 11, 2006
    Assignee: Engelhard Corporation
    Inventors: Jordan K. Lampert, Lawrence Shore, Robert J. Farrauto, Shinn Hwang
  • Patent number: 7045056
    Abstract: A composition for controlling CO and NOx emissions during FCC processes comprises (i) acidic oxide support, (ii) cerium oxide, (iii) lanthanide oxide other than ceria such as praseodymium oxide (iv), optionally, oxide of a metal from Groups Ib and IIb such as copper, silver and zinc and (v) precious metal such as Pt and Pd.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: May 16, 2006
    Assignee: Engelhard Corporation
    Inventors: Chandrasbekhar Pandurang Kelkar, Yuejin Li, Rostam J. Madon, Marius Vaarkamp
  • Patent number: 6962889
    Abstract: Disclosed are catalyst systems and methods of making the catalyst systems/supports for the polymerization of an olefin containing a solid titanium catalyst component having a substantially spherical shape and containing a titanium compound and a support made from a magnesium compound and an alkyl silicate. The catalyst system may further contain an organoaluminum compound and an organosilicon compound. Also disclosed are methods of making an impact copolymer involving polymerizing an olefin to provide a polyolefin matrix and polymerizing a polyolefin rubber using a solid titanium catalyst component containing a titanium compound and a support made from a magnesium compound and an alkyl silicate.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: November 8, 2005
    Assignee: Engelhard Corporation
    Inventors: Zhidong Zhu, Main Chang
  • Patent number: 6943132
    Abstract: Zeolite microsphere FCC catalysts having a novel morphology comprising a macroporous matrix and crystallized zeolite freely coating the walls of the pores of the matrix. The catalysts are formed from microspheres containing a metakaolin and kaolin calcined through its exotherm, the latter calcined kaolin being derived from a kaolin having a high pore volume. Kaolin having a high pore volume can be a pulverized ultrafine kaolin or a kaolin which has been pulverized to have an incipient slurry point less than 57% solids.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: September 13, 2005
    Assignee: Engelhard Corporation
    Inventors: David M. Stockwell, Randall P. Brown, Stephen H. Brown
  • Patent number: 6942783
    Abstract: A fluid catalytic cracking catalyst is provided with a high porosity by in-situ crystallizing an aluminosilicate zeolite from a reactive microsphere comprising metakaolin and hydrous kaolin. Any calcination of the reactive microsphere before reaction with a zeolite-forming solution is done at low temperatures so as to ensure the hydrous kaolin is not converted to metakaolin.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: September 13, 2005
    Assignee: Engelhard Corporation
    Inventors: Mingting Xu, David Matheson Stockwell
  • Patent number: 6942784
    Abstract: Zeolite microsphere FCC catalysts having a novel morphology comprising a porous matrix and crystallized zeolite freely coating the walls of the pores of the matrix. The catalysts are formed from microspheres containing a metakaolin and an alumina source other than kaolin having a high pore volume.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: September 13, 2005
    Assignee: Engelhard Corporation
    Inventors: David M. Stockwell, Stephen H. Brown, Ji-Yong Ryu
  • Patent number: 6908603
    Abstract: A novel method of forming ZSM-5 comprises reacting calcined kaolin microspheres with silicate and a seed solution used for forming zeolite Y under conditions of pH, temperature, and time to yield ZSM-5 crystals formed in-situ on said calcined kaolin microspheres. The reaction medium does not contain any organic templates or ZSM-5 seeding crystals.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: June 21, 2005
    Assignee: Engelhard Corporation
    Inventors: Mingting Xu, John Macaoay
  • Patent number: 6852298
    Abstract: A composition for controlling NOx emissions during FCC processes comprises (i) an acidic oxide support, (ii) cerium oxide, (iii) a lanthanide oxide other than ceria such as praseodymium oxide, and (iv), optionally, an oxide of a metal from Groups Ib and IIb such as copper, silver and zinc.
    Type: Grant
    Filed: January 13, 2004
    Date of Patent: February 8, 2005
    Assignee: Engelhard Corporation
    Inventors: Chandrashekhar P. Kelkar, David Stockwell, Samual Tauster
  • Patent number: 6800586
    Abstract: A composition for controlling NOx emissions during FCC processes comprises (i) an acidic oxide support, (ii) cerium oxide, (iii) a lanthanide oxide other than ceria such as praseodymium oxide, and (iv), optionally, an oxide of a metal from Groups Ib and IIb such as copper, silver and zinc.
    Type: Grant
    Filed: November 23, 2001
    Date of Patent: October 5, 2004
    Assignee: Engelhard Corporation
    Inventors: Chandrashekhar P. Kelkar, David Stockwell, Samuel Tauster
  • Patent number: 6716338
    Abstract: A fluid catalytic cracking catalyst made from microspheres that initially contain kaolin, a dispersible boehmite alumina and a sodium silicate or silica sol binder. The kaolin portion contains hydrous kaolin and optionally spinel, or mullite, or both spinel and mullite made via kaolin which has been calcined through its characteristic exotherm. Calcination of the hydrous clay to metakaolin and formation of in-situ zeolite by treatment with sodium silicate yields a catalyst containing Y-faujasite and transforms the dispersible boehmite into a transitional alumina. The catalyst can be used to crack resid or resid-containing feeds as the alumina phase formed from the dispersible boehmite passivates nickel and vanadium contaminants.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: April 6, 2004
    Assignee: Engelhard Corporation
    Inventors: Rostam Madon, David H. Harris, Mingting Xu, David Stockwell, Bruce Lerner, Glenn W. Dodwell
  • Patent number: 6706658
    Abstract: One aspect of the invention relates to a catalyst composite containing an extruded catalyst support containing an extruded activated carbonaceous material having specifically a defined pore structure. For example, the extruded activated carbonaceous material may have pores wherein at least about 40% of total Hg porosity occurs in pores having a diameter of about 200 Å and larger. Alternatively the extruded activated carbonaceous material may have a first set of pores having a pore diameter of at least about 40 Å and at most about 100 Å with a porosity of at least about 0.15 cc/g, and a second set of pores having a pore diameter of at least about 5,000 Å and at most about 20,000 Å with a porosity of at least about 0.3 cc/g.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: March 16, 2004
    Assignee: Engelhard Corporation
    Inventor: James Ferguson White
  • Patent number: 6696378
    Abstract: An in situ process for making improved zeolitic fluid cracking catalysts by spray drying a mixture of (i) hydrous kaolin and/or metakaolin, and (ii) calcined aluminum source, said calcined aluminum source being derived from a pulverized, ultrafine kaolin, calcining the resulting microspheres to convert hydrous kaolin to metakaolin, and reacting microspheres composed of a mixture of metakaolin and calcined aluminum source with an alkaline sodium silicate solution. The weight percent of metakaolin in the calcined microspheres is greater than the calcined aluminum source content.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: February 24, 2004
    Assignee: Engelhard Corporation
    Inventors: Clark W. Gibson, Mitchell J. Willis, George E. Gantt, Robert E. Barnes, David M. Stockwell
  • Patent number: 6673235
    Abstract: A fluid catalytic cracking catalyst made from microspheres that initially contain kaolin, a dispersible boehmite alumina and a sodium silicate or silica sol binder. The kaolin portion contains hydrous kaolin and a particular kaolin which has been calcined through its characteristic exotherm and which produces a catalyst having a novel morphology comprising a macroporous matrix and crystallized zeolite freely coating the walls of the pores of the matrix. Calcination of the hydrous kaolin to metakaolin and formation of in-situ zeolite by treatment with sodium silicate yields a catalyst containing Y-faujasite and transforms the dispersible boehmite into a transitional alumina. The catalyst can be used to crack resid or resid-containing feeds as the alumina phase formed from the dispersible boehmite passivates nickel and vanadium contaminants.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: January 6, 2004
    Assignee: Engelhard Corporation
    Inventors: David H. Harris, Mingting Xu, David Stockwell, Rostam J. Madon
  • Patent number: 6656347
    Abstract: Zeolite microsphere FCC catalysts having a novel morphology comprising a macroporous matrix and crystallized zeolite freely coating the walls of the pores of the matrix. The catalysts are formed from microspheres containing a metakaolin and kaolin calcined through its exotherm, the latter calcined kaolin being derived from a kaolin having a high pore volume. Kaolin having a high pore volume can be a pulverized ultrafine kaolin or a kaolin which has been pulverized to have an incipient slurry point less than 57% solids.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: December 2, 2003
    Assignee: Engelhard Corporation
    Inventors: David M. Stockwell, Randall P. Brown, Stephen H. Brown
  • Patent number: 6585822
    Abstract: Novel nanosized kaolin clay particles are prepared by agitating a fine particle size fraction of kaolin clay in a Netzsch mill until the particle size is reduced, aspect ratio is decreased and surface area is increased. The ultrafine kaolin particles are especially useful as a pigment to provide high surface gloss to ink jet printing papers.
    Type: Grant
    Filed: January 5, 2001
    Date of Patent: July 1, 2003
    Assignee: Engelhard Corporation
    Inventors: Richard R. Berube, Michael G. Londo, Sathanjheri A. Ravishankar
  • Patent number: 6579356
    Abstract: One aspect of the invention relates to a brown pigment composition with excellent weathering resistance containing iron oxide, chromium oxide, and one or more alumina and/or silica components. Another aspect of the invention relates to a method of making a brown pigment involving combining iron oxide, chromium oxide, and one or more alumina and/or silica components to form a mixture and heating the mixture to provide brown pigment particles. Yet another aspect of the invention relates to a plastic composition containing a major amount of a plastic material and a minor amount of a brown pigment composition containing iron oxide, chromium oxide, and one or more alumina and/or silica components.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: June 17, 2003
    Assignee: Engelhard Corporation
    Inventors: William Gerald Loucka, Mark Edward Gall, John Gilbert Richardson
  • Patent number: 6534677
    Abstract: The present invention provides a carbon-containing catalyst support that includes at least a carbonaceous material nd a thermosetting or sinterable polymer. The components are mixed and the polymer sintered or thermoset to provide a non-crushable, non-friable, and non-breakable composite. A catalytically active metal can be supported on the carbonaceous material prior to mixing, or on the composite after mixing and heating the mixture to sinter or thermoset the polymer.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: March 18, 2003
    Assignee: Engelhard Corporation
    Inventors: James Ferguson White, Jeffrey James Ramler
  • Patent number: 6514512
    Abstract: In one embodiment, the present invention relates to a pesticide delivery system, containing a continuous film having a thickness from about 1 &mgr;m to about 1,000 &mgr;m and noncontinuous areas having sizes less than about 100 &mgr;m, the continuous film containing a particulate material wherein at least 90% by weight of the particulate material has a particle size of about 10 microns or less, and a pest control agent at least partially coating the particulate material.
    Type: Grant
    Filed: October 2, 2000
    Date of Patent: February 4, 2003
    Assignee: Engelhard Corporation
    Inventors: Gary J. Puterka, David Michael Glenn, Dennis G. Sekutowski
  • Patent number: 6503970
    Abstract: One aspect of the invention relates to a yellow pigment composition containing at least one yellow nickel titanate and at least one yellow organic pigment containing a benzimidazolone moiety. Another aspect of the invention relates to a method of making a yellow pigment composition involving the steps of combining at least one yellow nickel titanate and at least one yellow benzimidazolone pigment to form a mixture; and mixing the mixture to form a homogenous mixture of the yellow pigment composition.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: January 7, 2003
    Assignee: Engelhard Corporation
    Inventor: Roland J. Valin