Patents Represented by Attorney Raymond K. Kwong
  • Patent number: 5844683
    Abstract: The position sensor (20) and method of the present invention allows detecting proper placement of substrate holders (25) in a processing apparatus (35), and can also be used to detect displacement of the substrates (70) within the substrate holder (25). The position sensor (20) comprises (a) an optical emitter (120) capable of emitting a light beam, (b) an optical sensor (125) capable of sensing the light beam emitted by the optical emitter (120), and (c) a light regulator (130) in a path (135) of the light beam that is capable of blocking the light beam from the optical sensor when the substrate holder (25) is improperly positioned in the process chamber (40).
    Type: Grant
    Filed: May 22, 1996
    Date of Patent: December 1, 1998
    Assignee: Applied Materials, Inc.
    Inventors: Andrew Pavloski, Dmitry Sklyar, Andrej Rolny
  • Patent number: 5643633
    Abstract: A tungsten silicide film is deposited from WF.sub.6 and SiCl.sub.2 H.sub.2 onto a substrate so that the tungsten to silicon ratio is substantially uniform through the thickness of the WSi.sub.x film, and the WSi.sub.x film is substantially free of fluorine. The film can be deposited by a multi-stage process where the pressure in the chamber is varied, or by a high temperature, high pressure deposition process in a plasma cleaned deposition chamber. Preferably the SiCl.sub.2 H.sub.2 and the WF.sub.6 are mixed upstream of the deposition chamber. A seeding gas can be added to the process gases.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: July 1, 1997
    Assignee: Applied Materials, Inc.
    Inventors: Susan G. Telford, Meng Chu Tseng, Michio Aruga, Moshe Eizenberg
  • Patent number: 5634266
    Abstract: A method of making a dielectric chuck for securing a semiconductor wafer on a pedestal having multiple apertures for the introduction of cooling gas beneath the wafer. The wafer is held by electrostatic force against a laminate of an electrode layer sandwiched between two dielectric layers in accordance with the method, such that the laminate presents a planar surface to the wafer for a substantial distance beyond the outer edge of the electrode layer. The laminate construction method ensures that a large wafer area beyond the outer edge of the electrode is in contact with the laminate, to minimize cooling gas leakage near the edge, and provides a longer useful life by increasing the path length of dielectric material between the electrode layer and potentially damaging plasma material surrounding the chuck.
    Type: Grant
    Filed: May 24, 1995
    Date of Patent: June 3, 1997
    Assignee: Applied Materials Inc.
    Inventors: Semyon Sherstinsky, Shamouil Shamouilian, Manoocher Birang, Alfred Mak, Simon W. Tam
  • Patent number: 5628870
    Abstract: An apparatus suitable for marking a substrate comprises a holder for holding a substrate and a ground for electrically grounding the substrate. At least one needle electrode has a tip located proximate to the substrate so that there is a gap between the substrate and the tip. A high voltage source provides a current to the electrode tip to ionize the gas in the gap so that the ionized gas can impinge upon and mark the substrate.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: May 13, 1997
    Assignee: Applied Materials, Inc.
    Inventors: Yan Ye, Anand Gupta, Yuri S. Uritsky
  • Patent number: 5608155
    Abstract: The apparent size of sub-micron contaminant particles on a wafer surface is enlarged by selective condensation of a vapor on the particles. The substrate is located proximate to and spaced apart from a liquid vapor source which is heated. The vaporized liquid adheres to the particles, and after a predetermined period of time, condensation of vapor on the substrate is stopped, and the substrate is scanned for detecting the particles.
    Type: Grant
    Filed: June 30, 1995
    Date of Patent: March 4, 1997
    Assignee: Applied Materials, Inc.
    Inventors: Yan Ye, Anand Gupta
  • Patent number: 5593541
    Abstract: A metal structure, such as an apparatus used in plasma processing of substrates, is rendered resistant to corrosion by coating components exposed to the plasma with a coating of rhodium. The rhodium coating can be made by electroplating, and preferably has a thickness of at least about 10 microinches, and preferably from about 10 to about 100 microinches. A coating of nickel can be applied between the rhodium coating and the metal component.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: January 14, 1997
    Assignee: Applied Materials, Inc.
    Inventors: Manus K. Wong, Sandy M. Chew
  • Patent number: 5558910
    Abstract: A tungsten silicide film is deposited from WF.sub.6 and SiCl.sub.2 H.sub.2 onto a substrate so that the tungsten to silicon ratio is substantially uniform through the thickness of the WSi.sub.x film, and the WSi.sub.x film is substantially free of fluorine. The film can be deposited by a multi-stage process where the pressure in the chamber is varied, or by a high temperature, high pressure deposition process in a plasma cleaned deposition chamber. Preferably the SiCl.sub.2 H.sub.2 and the WF.sub.6 are mixed upstream of the deposition chamber. A seeding gas can be added to the process gases.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: September 24, 1996
    Assignee: Applied Materials, Inc.
    Inventors: Susan G. Telford, Meng C. Tseng, Michio Aruga, Moshe Eizenberg