Patents Represented by Attorney Reed & Eberle LLP
  • Patent number: 7052594
    Abstract: The invention relates to devices that control fluid flow, which comprise a substrate having an upper surface adapted to contact a flowing fluid and an elastic sheet immobilized with respect to the substrate, typically at a minimum of two immobilization points. The elastic sheet has a deflectable active area at least partially contained between the immobilization points; the lower surface of the sheet faces the upper surface of the substrate. Optionally, two or more electrodes are provided in contact with the active area of the elastic sheet. The device also includes an actuation means for deflecting the active area toward or away from the upper surface of the substrate. Additionally, the invention provides various methods for controlling fluid flow as well as methods for making devices that control fluid flow. The invention is particularly suited for microfluidic applications.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: May 30, 2006
    Assignee: SRI International
    Inventors: Ronald E. Pelrine, Roy D. Kornbluh
  • Patent number: 6893836
    Abstract: This invention is directed to the use of focused energy, particularly focused acoustic energy, in the spatially directed ejection of cells suspended in a carrier fluid, e.g., for providing a pattern of cells on a substrate surface, such as a cellular array.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: May 17, 2005
    Assignee: Picoliter Inc.
    Inventors: Mitchell W. Mutz, Richard N. Ellson
  • Patent number: 6890703
    Abstract: Crosslinked particles are provided that are useful in the manufacture of dielectric materials for use in electronic devices such as integrated circuits. The crosslinked particles are prepared by activating crosslinkable groups on synthetic polymer molecules, where the crosslinkable groups are inert until activated and, when activated, undergo an irreversible intramolecular crosslinking reaction to form crosslinked particles.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: May 10, 2005
    Assignee: International Business Machines Corporation
    Inventors: Craig Jon Hawker, Robert Dennis Miller, James Lupton Hedrick, Victor Yee-Way Lee
  • Patent number: 6884859
    Abstract: A method is provided for synthesizing a polymer in a controlled fashion using a ring-opening metathesis polymerization (ROMP) reaction, wherein polymerization is carried out using a catalytically effective amount of an olefin metathesis catalyst and a bridged bicyclic or polycyclic olefin monomer that contains at least two heteroatoms directly or indirectly linked to each other. Preferred catalysts are Group 8 transition metal complexes, particularly complexes of Ru and Os. Such complexes include the ruthenium bisphosphine complex (PCy3)2(Cl)2Ru?CHPh (1) and the ruthenium carbene complex (IMesH2)(PCy3)(Cl)2Ru?CHPh (2). The invention also provides novel regioregular polymers synthesized using the aforementioned methodology, wherein the polymers may be saturated, unsaturated, protected, and/or telechelic. An exemplary polymer is poly((vinyl alcohol)2-alt-methylene)(MVOH).
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: April 26, 2005
    Assignee: California Institute of Technology
    Inventors: Robert H. Grubbs, Oren A. Scherman, Hyunjin M. Kim
  • Patent number: 6849423
    Abstract: A method is provided for acoustically ejecting from a channel or other container a plurality of fluid droplets, each of which contains one or more particles or other localized volumes. The localized volumes, which can be living cells, are ejected towards sites on a substrate surface, a container, or a channel. An integrated cell sorting and arraying system is also provided that is capable of sorting based upon cellular properties by the selective ejection of cells from a carrier fluid. The cells can be ejected with adjustable velocity and trajectory. The ejected cells can be directed to form an array, wherein each site of the array can contain a single cell. Additionally provided is a method of forming arrays of single live cells more efficiently, rapidly, flexibly, and economically than by other cell array approaches.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: February 1, 2005
    Assignee: Picoliter INC
    Inventors: Mitchell W. Mutz, Richard N. Ellson, David Soong-Hua Lee
  • Patent number: 6835392
    Abstract: A permeation enhancer composition is provided for increasing the permeability of skin or mucosal tissue to topically or transdermally administered pharmacologically or cosmeceutically active agents. The composition is comprised of a hydroxide-releasing agent and a lipophilic co-enhancer such as a fatty alcohol, a fatty ether, or a fatty acid ester, including fatty acid esters of polyols such as propylene glycol and glycerol. Also provided are pharmaceutical formulations containing a therapeutically effective amount of an active agent in addition to the aforementioned enhancer composition, methods for administering active agents topically or transdermally with enhanced permeation, and drug delivery systems for application to an individual's skin or mucosal tissue, wherein the systems are formulated so as to contain an active agent to be administered and an effective permeation enhancing amount of an enhancer composition of the invention.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: December 28, 2004
    Assignee: Dermatrends, Inc.
    Inventors: Tsung-Min Hsu, Eric C. Jacobson, Rose C. LoBello, Eric C. Luo
  • Patent number: 6833478
    Abstract: A method is provided for enhancing the solubility of an ionizable compound in a lipophilic medium by admixing the compound with an effective solubility-enhancing amount of an N,N-dinitramide salt. The ionizable compound, upon ionization, gives rise to a biologically active cationic species that ionically associates with the N,N-dinitramide anion N(NO2)2− following admixture with the N,N-dinitramide salt. The biologically active cationic species may be a pharmacologically active cation, in which case the method is useful for enhancing the penetration of the blood-brain barrier by the pharmacologically active cation. In other embodiments, the ionizable compounds are medical imaging or diagnostic agents, or agricultural agents such as pesticides. Salts of biologically active cations and N,N-dinitramide ion are also provided as novel compositions of matter.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: December 21, 2004
    Assignee: SRI International
    Inventors: Jeffrey C. Bottaro, Mark A. Petrie, Paul E. Penwell, David C. Bomberger
  • Patent number: 6821523
    Abstract: Provided are methods and topical pharmaceutical formulations for use in the treatment of warts. The invention involves the topical administration of a pharmacologically active base in a formulation having a pH of about 7.5 to about 13.0, preferably about 8.0 to 11.5, and most preferably about 8.5 to 10.5. These basic formulations can be used to treat human papilloma virus infections, particularly cutaneous warts.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: November 23, 2004
    Assignee: Dermatrends, Inc.
    Inventors: Howard I. Maibach, Eric C. Luo, Tsung-Min Hsu
  • Patent number: 6815064
    Abstract: Methods for synthesizing luminescent nanoparticles and nanoparticles prepared by such methods are provided. The nanoparticles are prepared by a method in which an additive is included in the reaction mixture. The additive may be a Group 2 element, a Group 12 element, a Group 13 element, a Group 14 element, a Group 15 clement, or a Group 16 element. In additions, a luminescent nanoparticle is provided that comprises a semiconductive core surrounded by an inorganic shell, an interfacial region and an additive present in the interfacial region or both the interfacial region and the shell.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: November 9, 2004
    Assignee: Quantum Dot Corporation
    Inventors: Joseph A. Treadway, Donald A. Zehnder, Marc D. Schrier
  • Patent number: 6814289
    Abstract: A novel spread spectrum barcode methodology is disclosed that allows a barcode to be read in its entirety even when a significant fraction or majority of the barcode is obscured. The barcode methodology makes use of registration or clocking information that is distributed along with the encoded user data across the barcode image. This registration information allows for the barcode image to be corrected for imaging distortion such as zoom, rotation, tilt, curvature, and perspective.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: November 9, 2004
    Assignee: Sandia Corporation
    Inventors: Eric B. Cummings, William R. Even, Jr.
  • Patent number: 6812551
    Abstract: Defect-free dielectric coatings comprised of porous polymeric matrices are prepared using nitrogen-containing polymers as pore-generating agents. The dielectric coatings are useful in a number of contexts, including the manufacture of electronic devices such as integrated circuit devices and integrated circuit packaging devices. The dielectric coatings are prepared by admixing, in a solvent, a polymeric nitrogenous porogen with a high temperature, thermosetting host polymer miscible therewith, coating a substrate surface with the admixture, heating the uncured coating to cure the host polymer and provide a vitrified, two-phase matrix, and then decomposing the porogen. The dielectric coatings so prepared have few if any defects, and depending on the amount and molecular weight of porogen used, can be prepared so as to have an exceptionally low dielectric constant on the order of 2.5 or less, preferably less than about 2.0.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: November 2, 2004
    Assignee: International Business Machines Corporation
    Inventors: Craig Jon Hawker, James Lupton Hedrick, Elbert Emin Huang, Victor Yee-Way Lee, Teddie Magbitang, David Mecerreyes, Robert Dennis Miller, Willi Volksen
  • Patent number: 6808934
    Abstract: The present invention provides a method for the acoustic ejection of fluid droplets from fluid-containing reservoirs to form arrays suitable for high-throughput combinatorial crystallization experiments. Such arrays may utilize very small fluid volumes, in the order of picoliters. The method is especially suited to preparing combinatorial libraries useful in developing techniques for crystallizing biomacromolecules, such as proteins. The small volumes conserve macromolecules that may be costly and rare, and permit the testing of a large number of experimental crystallization conditions for a given amount of a macromolecule. The time required for the experiments may be very short due to the small volumes. The invention is conducive to forming high-density microarrays of small volume crystallization experiments. Acoustic detection of crystals in situ, and distinction between biomacromolecular and non-biomacromolecular crystals, are also taught.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: October 26, 2004
    Assignee: Picoliter Inc.
    Inventors: Mitchell W. Mutz, Richard N. Ellson, Richard G. Stearns
  • Patent number: 6809315
    Abstract: The invention relates to a method and system for acoustically depositing a fluid on a surface of a cell sample. A reservoir containing a fluid is provided, and the cell sample surface is positioned in droplet-receiving relationship to the reservoir. Once the reservoir and the cell sample surface are appropriately positioned, focused acoustic energy is applied to eject a droplet of the fluid from the reservoir. As a result, the droplet is deposited on the sample surface at a designated site. Optionally, the fluid may be an analysis-enhancing fluid that contains a label moiety or a mass-spectrometry matrix material. When an analysis-enhancing fluid is used, the sample is typically subjected to conditions effective to allow the analysis-enhancing fluid to interact with the sample surface so as to render the sample surface suitable for analysis. Then, the sample may be analyzed at the designated site.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: October 26, 2004
    Assignee: Picoliter Inc.
    Inventors: Richard N. Ellson, Mitchell W. Mutz, Richard Michael Caprioli
  • Patent number: 6806325
    Abstract: Ruthenium and osmium carbene compounds that are stable in the presence of a variety of functional groups and can be used to catalyze olefin metathesis reactions on unstrained cyclic and acyclic olefins are disclosed. Also disclosed are methods of making the carbene compounds. The carbene compounds are of the formula where M is Os or Ru; R1 is hydrogen; R is selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, and substituted or unsubstituted aryl; X and X1 are independently selected from any anionic ligand; and L and L1 are independently selected from any neutral electron donor. The ruthenium and osmium carbene compounds of the present invention may be synthesized using diazo compounds, by neutral electron donor ligand exchange, by cross metathesis, using acetylene, using cumulated olefins, and in a one-pot method using diazo compounds and neutral electron donors.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: October 19, 2004
    Assignee: California Institute of Technology
    Inventors: Robert H. Grubbs, Peter Schwab, Sonbinh T. Nguyen
  • Patent number: 6806051
    Abstract: Partially nonhybridizing oligonucleotides are provided that contain two or more hybridizing segments, with any two hybridizing segments separated by a nonhybridizing spacer segment, i.e., a nucleotidic or nonnucleotidic segment that has little or no likelihood of binding to an oligonucleotide sequence found in nature. Oligonucleotide arrays are also provided in which at least one of the oligonucleotides of the array is a partially nonhybridizing oligonucleotide. The partially nonhybridizing oligonucleotides serve as multifunctional probes wherein each hybridizing segment of a single partially nonhybridizing oligonucleotide serves as an individual probe. Also provided are methods for preparing and using the partially nonhybridizing oligonucleotides and arrays formed therewith. A particularly preferred method of array fabrication involves the use of focused acoustic energy.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: October 19, 2004
    Assignee: Picoliter Inc.
    Inventor: Richard N. Ellson
  • Patent number: 6802593
    Abstract: The present invention provides a method and device for the acoustic ejection of fluid droplets from each of a plurality of fluid-containing reservoirs. The droplets are ejected toward sites on a substrate surface for deposition thereon. The device is comprised of: a plurality of reservoirs each adapted to contain a fluid; an ejector comprising a means for generating acoustic radiation and a means for focusing the generated acoustic radiation so as to eject fluid droplets from the reservoir fluids; and a means for positioning the ejector in acoustically coupled relationship to each of the reservoirs. The invention is useful in a number of contexts, particularly in the preparation of biomolecular arrays.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: October 12, 2004
    Assignee: Picoliter Inc.
    Inventors: Richard N. Ellson, James K. Foote, Mitchell W. Mutz
  • Patent number: 6803420
    Abstract: An adhesive composition is provided that contains both a hydrophobic phase and a hydrophilic phase, wherein the hydrophobic phase is composed of a crosslinked hydrophobic polymer composition and the hydrophilic phase is a water-absorbent blend of a hydrophilic polymer and a complementary oligomer capable of crosslinking the hydrophilic polymer through hydrogen bonding, ionic bonding, and/or covalent bonding. The composition is useful as a bioadhesive, for affixing drug delivery systems, wound dressings, bandages, cushions, or the like to a body surface such as skin or mucosal tissue.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: October 12, 2004
    Assignees: Corium International, A.V. Topchiev Institute of Petrochemical Synthsis, Russian Academy of Sciences
    Inventors: Gary W. Cleary, Mikhail M. Feldstein, Valery G. Kulichikhin, Danir F. Bairamov
  • Patent number: 6803429
    Abstract: A catalytic method is provided for a ring-opening cross-metathesis reaction between a cycloolefinic substrate and a second olefinic reactant, wherein the catalyst used is a transition metal alkylidene complex substituted with an N-heterocyclic carbene ligand. The substrates are selected so that the rate of the cross-metathesis reaction of the second olefinic reactant, kCM, is greater than or equal to the rate of the ring-opening metathesis reaction, kRO. In this way, the predominant ROCM product is a monomer, dimer, and/or oligomer, but not a polymer. The invention additionally provides for selective production of an end-differentiated olefinic product, using trisubstituted cycloolefins as substrates and/or a subsequent cross-metathesis reaction following an initial ROCM step. The cycloolefinic substrates include low-strain olefins such as cyclohexene as well as higher strain olefins such as cyclooctene.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: October 12, 2004
    Assignee: California Institute of Technology
    Inventors: John P. Morgan, Christie Morrill, Robert H. Grubbs, Tae-Lim Choi
  • Patent number: 6800722
    Abstract: The invention provides conjugated polymers that have good solubility and semiconductivity, and that display high photoluminescent and electroluminescent efficiency.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: October 5, 2004
    Assignee: SRI International
    Inventor: Qibing Pei
  • Patent number: RE38676
    Abstract: The present invention generally relates to the use of certain ruthenium and osmium complexes that are substantially inactive at a first temperature (preferably about room temperature) but becomes progressively more active at a higher second temperature. This difference in reactivities allows the reaction mixture to be formed and manipulated at the first temperature until polymerization is desired. When appropriate, the reaction mixture is heated to a suitable temperature (preferably greater than 50° C.) to activate the catalyst and to initiate polymerization. Because both the initiation and the rate of polymerization may be controlled with temperature, the inventive methods are especially suitable for ring opening metathesis polymerization (“ROMP”) reactions and for molding polymer articles that require extended pot-lives.
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: December 21, 2004
    Assignee: California Institute of Technology
    Inventors: Robert H. Grubbs, Thomas E. Wilhelm