Patents Represented by Attorney Reginald K. Taylor
  • Patent number: 5600023
    Abstract: In a single stage process for producing diisopropyl ether in the presence of an organic solvent, SO.sub.3 from a DIPE reactor effluent is transferred to an aqueous phase in a liquid extraction zone and removed from the aqueous phase using a basic ion exchange resin disposed in an SO.sub.3 removal zone. As a consequence, DIPE reactor effluent can be returned to the DIPE reactor to serve as a solvent and to assist in providing cooling to the DIPE reactor without causing catalyst deactivation.
    Type: Grant
    Filed: November 18, 1994
    Date of Patent: February 4, 1997
    Assignee: UOP
    Inventors: Terry L. Marker, Laura E. Kempf
  • Patent number: 5491267
    Abstract: In a process for the production of tertiary ethers by the reaction of an alcohol and isoalkene, a sidecut stream is selected from the etherification separation zone and recycled back to the etherification reaction zone. When this sidecut stream is characterized by an isoalkene to tertiary ether molar concentration ratio that is greater than the isoalkene to tertiary ether molar concentration ratio of the etherification reaction effluent (which is normally at equilibrium conditions), the conversion of isoalkene to tertiary ether is increased.
    Type: Grant
    Filed: March 7, 1994
    Date of Patent: February 13, 1996
    Assignee: UOP
    Inventors: Stanley J. Frey, David W. Liu, Charles P. Luebke, Terry L. Marker
  • Patent number: 5414168
    Abstract: Purified hydrogen is recovered from the effluent of a catalytic dehydrogenation zone using an integrated cold absorption process. The effluent, which contains olefinic hydrocarbons and hydrogen is compressed, cooled and contacted with a liquid absorbent. The purified hydrogen can be recycled to the dehydrogenation zone and the olefinic hydrocarbons are recovered as product. The present invention will recover higher purity hydrogen and liquefiable hydrocarbons more economically than prior art processes.
    Type: Grant
    Filed: May 6, 1993
    Date of Patent: May 9, 1995
    Assignee: UOP
    Inventor: Norman H. Scott
  • Patent number: 5399787
    Abstract: In a process for producing tertiary alkyd ethers from an olefinic hydrocarbon feedstock, undesirable normal alkanes are removed from the process by passing at least a portion of a hydrocarbon process stream to an alkane isomerization zone to convert normal alkane to isoalkane and passing the alkane isomerization zone effluent to a separation zone to remove the isoalkane. Since no normal alkane is discharged from the process, the loss of valuable olefins, which have boiling points close to normal alkane, is prevented and olefins are retained in the process and converted to the appropriate tertiary alkyl ether. The result is an increase in the ether yield.
    Type: Grant
    Filed: September 20, 1993
    Date of Patent: March 21, 1995
    Assignee: UOP
    Inventors: Suleyman M. Ozmen, Paul J. Kuchar
  • Patent number: 5399788
    Abstract: In process for the production of diisopropyl ether, a propylene-containing stream is contacted with isopropyl alcohol in a first stage in the presence of a catalyst under conditions to produce an effluent stream comprising diisopropyl ether. At least a portion of this effluent stream is recycled to a second stage where the diisopropyl ether is reacted with water to produce isopropyl alcohol. The isopropyl alcohol is then recycled to the first stage. The benefit of producing isopropyl alcohol by the hydration of diisopropyl ether is that it is an easier reaction than, for example, the hydration of propylene. As a result, the process of the present invention can operate under less severe conditions, i.e., less cost.
    Type: Grant
    Filed: December 22, 1993
    Date of Patent: March 21, 1995
    Assignee: UOP
    Inventor: Terry L. Marker
  • Patent number: 5371301
    Abstract: In a single stage process for producing diisopropyl ether, SO.sub.3 from a DIPE reactor effluent is transferred to an aqueous phase in a liquid extraction zone and removed from the aqueous phase using a basic ion exchange resin disposed in an SO.sub.3 removal zone. As a consequence, DIPE reactor effluent can be returned to the DIPE reactor to serve as a solvent and to assist in providing cooling to the DIPE reactor without causing catalyst deactivation.
    Type: Grant
    Filed: June 21, 1993
    Date of Patent: December 6, 1994
    Assignee: UOP
    Inventors: Terry L. Marker, Laura E. Kempf
  • Patent number: 5352848
    Abstract: In an etherification process that uses an FCC effluent as a source of isoolefins, the buildup of nitriles in an alcohol-containing stream that is recycled to the etherification zone is prevented by dragging at least a portion of the methanol-containing stream to the FCC reaction zone. As a result, the etherification catalyst deactivation rate is reduced.
    Type: Grant
    Filed: December 29, 1992
    Date of Patent: October 4, 1994
    Assignee: UOP
    Inventor: Paul R. Cottrell
  • Patent number: 5329061
    Abstract: In a combination crystallization/xylene isomerization process for producing para-xylene crystals, the recovery section is modified to accommodate crystallizing and separating para-xylene crystals at two different temperatures (a higher temperature followed by a lower temperature). The benefit is a reduction in the overall energy cost of the process.
    Type: Grant
    Filed: June 1, 1993
    Date of Patent: July 12, 1994
    Assignee: UOP
    Inventor: John D. Swift
  • Patent number: 5329060
    Abstract: The eutectic limit of para-xylene crystallization is overcome by enriching the concentration of para-xylene of the crystallization feed. This is accomplished by passing the crystallization feed stream through a selective adsorption zone to produce a para-xylene-enriched stream and a para-xylene-depleted stream. The para-xylene-depleted stream is passed to an isomerization zone to re-equilibrate the xylene mixture, thereby producing additional para-xylene. The para-xylene-enriched stream is passed to a crystallization zone to produce high purity para-xylene. The result is an increase in the overall para-xylene recovery.
    Type: Grant
    Filed: April 1, 1993
    Date of Patent: July 12, 1994
    Assignee: UOP
    Inventor: John D. Swift
  • Patent number: 5324866
    Abstract: The present invention is an integrated isopropyl alcohol (IPA) and diisopropyl ether (DIPE) process. In this process, IPA, substantially free of DIPE, is formed in a hydration reactor by reacting an olefinic feedstock with water in a hydration reactor. The effluent from the hydration reactor is then contacted in a first separation unit with DIPE which was made in an etherification reactor. The resulting mixture is then passed to a second separation unit to separate the IPA from the DIPE product. The IPA is then fed to the etherification reactor to produce DIPE.
    Type: Grant
    Filed: March 23, 1993
    Date of Patent: June 28, 1994
    Assignee: UOP
    Inventors: Terry L. Marker, Laura E. Kempf
  • Patent number: 5321184
    Abstract: A pretreatment method for a C.sub.8 aromatic isomerization process wherein the isomerization catalyst is initially contacted with a C.sub.8 aromatic feedstock under high severity isomerization conditions for a period of time sufficient to deposit a substantial amount to carbonaceous material on the catalyst. After pretreatment, the carbon-laden catalyst continues to be contacted by the C.sub.8 aromatic feedstock under less severe conditions than that of the pretreatment mode of operation.
    Type: Grant
    Filed: December 29, 1992
    Date of Patent: June 14, 1994
    Assignee: UOP
    Inventors: Chi-Chu D. Low, Randy J. Lawson, Paul J. Kuchar, Gail L. Gray
  • Patent number: 5278344
    Abstract: The present invention is an integrated catalytic reforming/hydrodealkylation process that maximizes benzene recovery by incorporating refrigeration and pressure swing adsorption separation units. In the refrigeration separation unit, liquid reformate is used as a sponge oil to recover benzene from a hydrodealkylation purge gas stream, which in the past has been vented. The pressure swing adsorption unit remove impurities from a hydrogen-rich gas stream prior to use in the hydrodealkylation unit.
    Type: Grant
    Filed: December 14, 1992
    Date of Patent: January 11, 1994
    Assignee: UOP
    Inventors: Christopher D. Gosling, John D. Swift
  • Patent number: 5118896
    Abstract: An aromatic alkylation process comprising the steps of contacting a hydrocarbon feed comprising an aromatic hydrocarbon with an alkylating agent under liquid phase alkylation condition in the presence of a silica-containing molecular sieve wherein said said catalyst possesses a pore volume of about 0.25-0.50 cc/g in pores having a radius greater than 450 Angstroms and a catalyst particle diameter of not more than about 1/32 of an inch.
    Type: Grant
    Filed: October 31, 1990
    Date of Patent: June 2, 1992
    Assignee: Amoco Corporation
    Inventors: Edward F. Steigelmann, Terry L. Marker
  • Patent number: 5087784
    Abstract: An aromatic alkylation process comprising continuously feeding catalyst particles through at least one substantially vertically-positioned permeable tube disposed in a vessel surrounding said permeable tube, contacting said catalyst particles with at least one aromatic hydrocarbon and at least one alkylating agent under liquid phase alkylation conditions, continuously removing said catalyst particles from a lower end of said tube, and recovering said alkyl-substituted aromatic.
    Type: Grant
    Filed: October 31, 1990
    Date of Patent: February 11, 1992
    Assignee: Amoco Corporation
    Inventors: Harold S. Primack, Ronald L. Cutshall
  • Patent number: 5073529
    Abstract: A deactivated catalyst comprising a nonacidic zeolite and a Group VIII metal is regenerated by a two-step carbon burn process. The first oxidation step contacts the nonacidic zeolite catalyst with a halogen-free gaseous stream comprising oxygen and an inert gas at a first temperature sufficient to combust carbonaceous material while maintaining a substantial portion of the active Group VIII metal surface area withn the micropores of the nonacidic zeolite for a first period of time sufficient to substantially complete combustion of at least a portion the carbonaceous material at the first temperature. The second step contacts this nonacidic zeolite catalyst with a gaseous stream comprising oxygen and an inert gas at a second temperature sufficient to combust any remaining carbonaceous material for a second period of time sufficient to maintain a substantial portion of the active Group VIII metal surface area in the micropores of the nonacidic zeolite catalyst.
    Type: Grant
    Filed: December 20, 1989
    Date of Patent: December 17, 1991
    Assignee: Amoco Corporation
    Inventors: Jeffrey T. Miller, Frank S. Modica, Sandra L. Cilluffo, Victor K. Shum
  • Patent number: 5066628
    Abstract: This invention comprises a reforming catalyst and process with an unsulfided catalyst comprising Zeolite L, in which the cationic sites have been exchanged to contain potassium or barium or both; a Group VIII noble metal and rhenium, where the ratio of noble metal to rhenium is from about 0.1:1 to about 10:0. This catalyst gives improved selectivity toward aromatics formation and has improved sulfur tolerance compared to other L zeolite reforming catalysts.
    Type: Grant
    Filed: May 23, 1990
    Date of Patent: November 19, 1991
    Assignee: Amoco Corporation
    Inventors: Jeffrey T. Miller, Victor K. Shum
  • Patent number: 5028312
    Abstract: A method is disclosed for reforming hydrocarbons, particularly C.sub.6 -C.sub.10 hydrocarbons, to aromatics, by passing the hydrocarbons over a dehydrocyclization catalyst at dehydrocyclization conditions. The catalyst comprises a non-acidic large pore zeolite having a Group VIII metal and an alkaline earth metal, said alkaline earth metal having been impregnated onto the zeolite by contacting the zeolite with an alkaline earth metal solution of a concentration sufficient to result in the zeolite having an alkaline earth metal content of less than about 2% by weight of the zeolite.
    Type: Grant
    Filed: May 31, 1989
    Date of Patent: July 2, 1991
    Assignee: Amoco Corporation
    Inventors: Jeffrey T. Miller, Frank S. Modica, Victor K. Shum
  • Patent number: 5000389
    Abstract: In a kerogen agglomeration process, a substantial amount of the oil shale is comminuted to a top size greater than about 0.4 to 8 in. prior to kerogen agglomeration. Kerogen agglomeration includes comminuting the oil shale in the presence of an added organic liquid and water to form kerogen-rich agglomerates and mineral-rich particles.
    Type: Grant
    Filed: November 9, 1989
    Date of Patent: March 19, 1991
    Assignee: Amoco Corporation
    Inventors: Bernard Y. C. So, Terry L. Marker
  • Patent number: 4963250
    Abstract: In a kerogen agglomeration process, the oil shale is pretreated by comminuting the oil shale in the presence of an added organic liquid prior to contacting the oil shale with an added organic liquid and water to form kerogen-rich agglomerates and mineral-rich particles. The benefit is a reduction in comminution cost while maintaining about the same separation efficiency as methods having higher comminution costs.
    Type: Grant
    Filed: November 9, 1989
    Date of Patent: October 16, 1990
    Assignee: Amoco Corporation
    Inventors: Bernard Y. C. So, Terry L. Marker
  • Patent number: 4955232
    Abstract: An apparatus and method for measuring the vertical gradient of the vertical gravitational field using a gravity gradiometer comprising a housing containing a fluid, a float buoyantly supported within the fluid, mechanism for varying the metacentric height of the float, and apparatus for obtaining a measure of the gravitational gradient acting on the float resulting from varying the metacentric height.
    Type: Grant
    Filed: May 31, 1989
    Date of Patent: September 11, 1990
    Assignee: Amoco Corporation
    Inventors: Theodore V. Lautzenhiser, Melvin Eisner