Patents Represented by Attorney, Agent or Law Firm Richard B. Main
  • Patent number: 5949974
    Abstract: A SNMP network comprises a power manager with a SNMP agent in TCP/IP communication over a network with a SNMP network manager. The power manager is connected to control several intelligent power modules each able to independently control the on/off power to several inter-networking devices in an equipment rack at a common remote node, e.g., a point-of-presence site. Power-on and load sensors within each intelligent power module are able to report the power status of each inter-networking device to the SNMP network manager with MIB variables in response to GET commands. The SNMP network manager is further able to reboot each inter-networking device by cycling the power on/off to its respective intelligent power module with the SET command provided in conventional SNMP management applications.
    Type: Grant
    Filed: July 23, 1996
    Date of Patent: September 7, 1999
    Inventors: Carrell W. Ewing, Andrew J. Cleveland
  • Patent number: 5893267
    Abstract: Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO.sub.x reduction in oxygen-rich vehicle engine exhausts.
    Type: Grant
    Filed: August 5, 1997
    Date of Patent: April 13, 1999
    Assignee: The Regents of the University of California
    Inventors: George E. Vogtlin, Bernard T. Merritt, Mark C. Hsiao, P. Henrik Wallman, Bernardino M. Penetrante
  • Patent number: 5891409
    Abstract: A two-stage catalyst comprises an oxidative first stage and a reductive second stage. The first stage is intended to convert NO to NO.sub.2 in the presence of O.sub.2. The second stage serves to convert NO.sub.2 to environmentally benign gases that include N2, CO2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber. An oxidizing first catalyst converts NO to NO.sub.2 in the presence of O.sub.2 and includes platinum/alumina, e.g., Pt/Al.sub.2 O.sub.3 catalyst. A flow of hydrocarbons (C.sub.x H.sub.y) is input from a pipe into a second chamber. For example, propene can be used as a source of hydrocarbons. The NO.sub.2 from the first catalyst mixes with the hydrocarbons in the second chamber. The mixture proceeds to a second reduction catalyst that converts NO.sub.2 to N2, CO2, and H.sub.2 O, and includes a gamma-alumina .gamma.-Al.
    Type: Grant
    Filed: April 18, 1997
    Date of Patent: April 6, 1999
    Assignee: The Regents of the University of California
    Inventors: Mark C. Hsiao, Bernard T. Merritt, Bernardino M. Penetrante, George E. Vogtlin
  • Patent number: 5852672
    Abstract: A three-dimensional motion camera system comprises a light projector placed between two synchronous video cameras all focused on an object-of-interest. The light projector shines a sharp pattern of vertical lines (Ronchi ruling) on the object-of-interest that appear to be bent differently to each camera by virtue of the surface shape of the object-of-interest and the relative geometry of the cameras, light projector and object-of-interest Each video frame is captured in a computer memory and analyzed. Since the relative geometry is known and the system pre-calibrated, the unknown three-dimensional shape of the object-of-interest can be solved for by matching the intersections of the projected light lines with orthogonal epipolar lines corresponding to horizontal rows in the video camera frames. A surface reconstruction is made and displayed on a monitor screen. For 360.degree.
    Type: Grant
    Filed: June 9, 1997
    Date of Patent: December 22, 1998
    Assignee: The Regents of the University of California
    Inventor: Shin-Yee Lu
  • Patent number: 5841651
    Abstract: Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased.
    Type: Grant
    Filed: November 9, 1992
    Date of Patent: November 24, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Chi Yung Fu
  • Patent number: 5835054
    Abstract: A non-invasive imaging system for analyzing engineered structures comprises pairs of ultra wideband radar transmitters and receivers in a linear array that are connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitters and receivers are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receivers are moved about the surface, e.g., attached to the bumper of a truck, to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: November 10, 1998
    Assignee: The Regents of the University of California
    Inventors: John P. Warhus, Jeffrey E. Mast
  • Patent number: 5796363
    Abstract: An imaging system for analyzing structures comprises a radar transmitter and receiver connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitter and receiver are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receiver are moved about the surface to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes.
    Type: Grant
    Filed: March 1, 1996
    Date of Patent: August 18, 1998
    Assignee: The Regents of the University of California
    Inventor: Jeffrey E. Mast
  • Patent number: 5746634
    Abstract: A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape.
    Type: Grant
    Filed: April 3, 1996
    Date of Patent: May 5, 1998
    Assignee: The Regents of the University of California
    Inventors: Alan F. Jankowski, Jeffrey P. Hayes
  • Patent number: 5742471
    Abstract: A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3) in alternating layers to form a nano-laminate.
    Type: Grant
    Filed: November 25, 1996
    Date of Patent: April 21, 1998
    Assignee: The Regents of the University of California
    Inventors: Troy W. Barbee, Jr., Gary W. Johnson
  • Patent number: 5731538
    Abstract: A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques.
    Type: Grant
    Filed: February 19, 1997
    Date of Patent: March 24, 1998
    Assignee: The Regents of the University of California
    Inventors: Dennis W. O'Brien, Robert L. Druce, Gary W. Johnson, George E. Vogtlin, Troy W. Barbee, Jr., Ronald S. Lee
  • Patent number: 5722989
    Abstract: A micro-mechanical system for medical procedures is constructed in the basic form of a catheter having a distal end for insertion into and manipulation within a body and a near end providing for a user to control the manipulation of the distal end within the body. A fiberoptic cable is disposed within the catheter and having a distal end proximate to the distal end of the catheter and a near end for external coupling of laser light energy. A microgripper is attached to the distal end of the catheter and providing for the gripping or releasing of an object within the body. A laser-light-to-mechanical-power converter is connected to receive laser light from the distal end of the fiberoptic cable and connected to mechanically actuate the microgripper.
    Type: Grant
    Filed: March 6, 1997
    Date of Patent: March 3, 1998
    Assignee: The Regents of the University of California
    Inventors: Joseph P. Fitch, Karla Hagans, Robert Clough, Dennis L. Matthews, Abraham P. Lee, Peter A. Krulevitch, William J. Benett, Luiz Da Silva, Peter M. Celliers
  • Patent number: 5717787
    Abstract: A method for compressing data for storage or transmission. Given a complex polynomial and a value assigned to each root, a root generated data file (RGDF) is created, one entry at a time. Each entry is mapped to a point in a complex plane. An iterative root finding technique is used to map the coordinates of the point to the coordinates of one of the roots of the polynomial. The value associated with that root is assigned to the entry. An equational data compression (EDC) method reverses this procedure. Given a target data file, the EDC method uses a search algorithm to calculate a set of m complex numbers and a value map that will generate the target data file. The error between a simple target data file and generated data file is typically less than 10%. Data files can be transmitted or stored without loss by transmitting the m complex numbers, their associated values, and an error file whose size is at most one-tenth of the size of the input data file.
    Type: Grant
    Filed: April 16, 1996
    Date of Patent: February 10, 1998
    Assignee: The Regents of the University of California
    Inventors: John Thomas Feo, David Carlton Hanks, Thomas Arthur Kraay
  • Patent number: 5711147
    Abstract: Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO.sub.x reduction in oxygen-rich vehicle engine exhausts.
    Type: Grant
    Filed: August 19, 1996
    Date of Patent: January 27, 1998
    Assignee: The Regents of the University of California
    Inventors: George E. Vogtlin, Bernard T. Merritt, Mark C. Hsiao, P. Henrik Wallman, Bernardino M. Penetrante
  • Patent number: 5703965
    Abstract: An image represented in a first image array of pixels is first decimated in two dimensions before being compressed by a predefined compression algorithm such as JPEG. Another possible predefined compression algorithm can involve a wavelet technique. The compressed, reduced image is then transmitted over the limited bandwidth transmission medium, and the transmitted image is decompressed using an algorithm which is an inverse of the predefined compression algorithm (such as reverse JPEG). The decompressed, reduced image is then interpolated back to its original array size. Edges (contours) in the image are then sharpened to enhance the perceptual quality of the reconstructed image. Specific sharpening techniques are described.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: December 30, 1997
    Assignee: The Regents of the University of California
    Inventors: Chi-Yung Fu, Loren I. Petrich
  • Patent number: 5689629
    Abstract: A three-dimensional image reconstruction method comprises treating the object of interest as a group of elements with a size that is determined by the resolution of the projection data, e.g., as determined by the size of each pixel. One of the projections is used as a reference projection. A fictitious object is arbitrarily defined that is constrained by such reference projection. The method modifies the known structure of the fictitious object by comparing and optimizing its four projections to those of the unknown structure of the real object and continues to iterate until the optimization is limited by the residual sum of background noise. The method is composed of several sub-processes that acquire four projections from the real data and the fictitious object: generate an arbitrary distribution to define the fictitious object, optimize the four projections, generate a new distribution for the fictitious object, and enhance the reconstructed image.
    Type: Grant
    Filed: December 12, 1995
    Date of Patent: November 18, 1997
    Assignee: The Regents of the University of California
    Inventor: Heung-Rae Lee
  • Patent number: 5661385
    Abstract: A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only and inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window.
    Type: Grant
    Filed: August 3, 1995
    Date of Patent: August 26, 1997
    Assignee: The Regents of the University of California
    Inventor: Thomas E. McEwan
  • Patent number: 5602965
    Abstract: Customizable neural network in which one or more resistors form each synapse. All the resistors in the synaptic array are identical, thus simplifying the processing issues. Highly doped, amorphous silicon is used as the resistor material, to create extremely high resistances occupying very small spaces. Connected in series with each resistor in the array is at least one severable conductor whose uppermost layer has a lower reflectivity of laser energy than typical metal conductors at a desired laser wavelength.
    Type: Grant
    Filed: September 14, 1995
    Date of Patent: February 11, 1997
    Assignee: The Regents of the University of California
    Inventor: Chi Y. Fu
  • Patent number: 5597457
    Abstract: A method for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10.sup.6 V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved.
    Type: Grant
    Filed: April 8, 1996
    Date of Patent: January 28, 1997
    Assignee: The Regents of the University of California
    Inventors: George D. Craig, Robert Glass, Bernhard Rupp
  • Patent number: 5596436
    Abstract: An SCM system for simultaneously reducing the concomitant problems of receiver complexity and dispersion penalty and without requiring the use of an expensive, high-bandwidth optical detector. The system provides both a dispersion reduction and a direct detection to the receiver, with microwave mixers and lithium niobate external modulators that produce sidebands that are only separated by a few gigahertz from a principal laser optical carrier. Digital data streams are independently impressed upon these sidebands for transmission over an ordinary single-mode fiber. Independent high-speed data streams are upconverted to microwave frequencies. These subcarriers are then combined with a microwave power combiner and amplified with a microwave amplifier. A solid-state 1550-nm laser carrier is modulated by the microwave subcarriers. An erbium-doped fiber amplifier (EDFA) is used just prior to long-distance transmission over ordinary single-mode fiber.
    Type: Grant
    Filed: July 14, 1995
    Date of Patent: January 21, 1997
    Assignee: The Regents of the University of California
    Inventors: Paul D. Sargis, Ronald E. Haigh, Kent G. McCammon
  • Patent number: 5591951
    Abstract: A system and method for simultaneously collecting serial number information reports from numerous colliding coded-radio-frequency identity tags. Each tag has a unique multi-digit serial number that is stored in non-volatile RAM. A reader transmits an ASCII coded "D" character on a carrier of about 900 MHz and a power illumination field having a frequency of about 1.6 Ghz. A one MHz tone is modulated on the 1.6 Ghz carrier as a timing clock for a microprocessor in each of the identity tags. Over a thousand such tags may be in the vicinity and each is powered-up and clocked by the 1.6 Ghz power illumination field. Each identity tag looks for the "D" interrogator modulated on the 900 MHz carrier, and each uses a digit of its serial number to time a response. Clear responses received by the reader are repeated for verification. If no verification or a wrong number is received by any identity tag, it uses a second digital together with the first to time out a more extended period for response.
    Type: Grant
    Filed: October 12, 1995
    Date of Patent: January 7, 1997
    Assignee: The Regents of the University of California
    Inventor: Michael A. Doty