Patents Represented by Attorney Richard D. Emery
  • Patent number: 8104293
    Abstract: A method of operating a cooling device is provided. The method includes sequentially regulating a temperature of a plurality of thermally coupled magneto-caloric elements for maximizing a magneto-caloric effect for each of the magneto-caloric elements when subjected to a magnetic regenerative refrigeration cycle.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: January 31, 2012
    Assignee: General Electric Company
    Inventors: Jayesh Jayanarayan Barve, Chandrasekhar Samiappan, Sunil Srinivasa Murthy
  • Patent number: 8093971
    Abstract: A micro electromechanical system switch having an electrical pathway is presented. The switch includes a first portion and a second portion. The second portion is offset to a zero overlap position with respect to the first portion when the switch is in open position (or in the closed position depending on the switch architecture). The switch further includes an actuator for moving the first portion and the second portion into contact.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: January 10, 2012
    Assignee: General Electric Company
    Inventors: Xuefeng Wang, Alex David Corwin, Bo Li, Kanakasabapathi Subramanian, Kuna Venkat Satya Rama Kishore
  • Patent number: 8076696
    Abstract: A device is provided that includes a first conductive substrate and a second conductive substrate. A first power semiconductor component having a first thickness can be electrically coupled to the first conductive substrate. A second power semiconductor component having a second thickness can be electrically coupled to the second conductive substrate. A positive terminal can also be electrically coupled to the first conductive substrate, while a negative terminal can be electrically coupled to the second power semiconductor component, and an output terminal may be electrically coupled to the first power semiconductor component and the second conductive substrate. The terminals, the power semiconductor components, and the conductive substrates may thereby be incorporated into a common circuit loop, and may together be configured such that a width of the circuit loop in at least one direction is defined by at least one of the first thickness or the second thickness.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: December 13, 2011
    Assignee: General Electric Company
    Inventors: Richard Alfred Beaupre, Eladio Clemente Delgado, Ljubisa Dragoljub Stevanovic
  • Patent number: 8058159
    Abstract: A method for fabricating a component is disclosed. The method includes: providing a member having an effective work function of an initial value, disposing a sacrificial layer on a surface of the member, disposing a first agent within the member to obtain a predetermined concentration of the agent at said surface of the member, annealing the member, and removing the sacrificial layer to expose said surface of the member, wherein said surface has a post-process effective work function that is different from the initial value.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: November 15, 2011
    Assignee: General Electric Company
    Inventors: Vance Robinson, Stanton Earl Weaver, Joseph Darryl Michael
  • Patent number: 8054148
    Abstract: A device for controlling the flow of electric current is provided. The device comprises a first conductor as thin film form; a second conductor switchably coupled to the first conductor to alternate between an electrically connected state with the first conductor and an electrically disconnected state with the first conductor. At least one conductor further comprises an electrical contact, the electrical contact comprising a solid matrix comprising a plurality of pores; and a filler material disposed within at least a portion of the plurality of pores. The filler material has a melting point of less than about 575 K. A method to make an electrical contact is provided. The method includes the steps of: providing a substrate; providing a plurality of pores on the substrate; and disposing a filler material within at least a portion of the plurality of pores. The filler material has a melting point of less than about 575 K.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: November 8, 2011
    Assignee: General Electric Company
    Inventors: Duraiswamy Srinivasan, Reed Roeder Corderman, Christopher Fred Keimel, Somasundaram Gunasekaran, Sudhakar Eddula Reddy, Arun Virupaksha Gowda, Kanakasabapathi Subramanian, Om Prakash
  • Patent number: 8054147
    Abstract: Electrostatic devices, systems and methods are presented. One embodiment is an electrostatic device including a substrate, a first electrode disposed on the substrate, a movable element having a second electrode and a control electrode. The control electrode is disposed in electrostatic communication with the movable element. The control electrode includes a protection layer having resistivity in a range of from about 1 ohm-cm to about 10 kohm-cm.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: November 8, 2011
    Assignee: General Electric Company
    Inventors: David Cecil Hays, Christopher Fred Keimel, Marco Francesco Aimi
  • Patent number: 8054589
    Abstract: An apparatus, such as a switch module, is provided. The apparatus can include an electromechanical switch structure configured to move between an open configuration and a fully-closed configuration (associated with a minimum characteristic resistance) over a characteristic time. A commutation circuit can be connected in parallel with the electromechanical switch structure, and can include a balanced diode bridge configured to suppress arc formation between contacts of the electromechanical switch structure and a pulse circuit including a pulse capacitor configured to form a pulse signal (in connection with a switching event of the electromechanical switch structure) for causing flow of a pulse current through the balanced diode bridge. The electromechanical switch structure and the balanced diode bridge can be disposed such that a total inductance associated with the commutation circuit is less than or equal to a product of the characteristic time and the minimum characteristic resistance.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: November 8, 2011
    Assignee: General Electric Company
    Inventors: Arun Virupaksha Gowda, Kathleen Ann O'Brien, John Norton Park, William James Premerlani, Owen Jannis Samuel Schelenz, Kanakasabapathi Subramanian
  • Patent number: 8051905
    Abstract: In one embodiment, a cooling system is disclosed. The cooling system comprises: a cooling channel for receiving a cooling media, a substrate disposed near the cooling channel, and a fluidic jet disposed within the substrate and in fluid communication with the cooling channel. The cooling channel is for thermal communication with a component to be cooled. The cooling channel has a height of less than or equal to about 3 mm and a width of less than or equal to 2 mm. The fluidic jet comprises a cavity defined by a well and a membrane. In one embodiment, a method of cooling an electrical component comprises: passing a cooling media through a cooling channel, drawing the cooling media into one or more of the fluidic jets, expelling the cooling media from the one or more fluidic jets into the cooling channel, and removing thermal energy from the electrical component.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: November 8, 2011
    Assignee: General Electric Company
    Inventors: Mehmet Arik, Todd Garrett Wetzel, Stephen Adam Solovitz
  • Patent number: 8049338
    Abstract: A power semiconductor module includes: an interconnect layer including an electrical conductor patterned on a dielectric layer, the electrical conductor including a power coupling portion having a thickness sufficient to carry power currents and a control coupling portion having a thickness thinner than that of the power coupling portion; and a semiconductor power device physically coupled to the interconnect layer and electrically coupled to the power coupling portion of the electrical conductor.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: November 1, 2011
    Assignee: General Electric Company
    Inventors: Eladio Clemente Delgado, Richard Alfred Beaupre, Stephen Daley Arthur, Ernest Wayne Balch, Kevin Matthew Durocher, Paul Alan McConnelee, Raymond Albert Fillion
  • Patent number: 8050000
    Abstract: A system is presented. The system includes a micro-electromechanical system switch. Further, the system includes a balanced diode bridge configured to suppress arc formation between contacts of the micro-electromechanical system switch. A pulse circuit is coupled to the balanced diode bridge to form a pulse signal in response to a fault condition. An energy-absorbing circuitry is coupled in a parallel circuit with the pulse circuit and is adapted to absorb electrical energy resulting from the fault condition without affecting a pulse signal formation by the pulse circuit.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: November 1, 2011
    Assignee: General Electric Company
    Inventors: Joshua Isaac Wright, Kanakasabqapathi Subramanian, William James Premerlani, John Norton Park
  • Patent number: 7964294
    Abstract: An easy to clean and stain resistant coating for a cooking product includes an oxycarbofluoride coating. The oxycarbofluoride coating has a composition comprising at least one metal oxide, carbon and fluorine and can be applied to a substrate using a sol-gel process.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: June 21, 2011
    Assignee: General Electric Company
    Inventors: Venkat Subramaniam Venkataramani, Salil Mohan Joshi, Nagaveni Karkada, Sundeep Kumar
  • Patent number: 7928333
    Abstract: A device, such as a switch structure, is provided, the device including a contact and a conductive element. The conductive element can be configured to be selectively moveable between a non-contacting position, in which the conductive element is separated from the contact (in some cases by a distance less than or equal to about 4 ?m, and in others by less than or equal to about 1 ?m), and a contacting position, in which the conductive element contacts and establishes electrical communication with the contact. When the conductive element is disposed in the non-contacting position, the contact and the conductive element can be configured to support an electric field therebetween with a magnitude of greater than 320 V ?m?1 and/or a potential difference of about 330 V or more.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: April 19, 2011
    Assignee: General Electric Company
    Inventors: Xuefeng Wang, Marco Francesco Aimi, Shubhra Bansal, Christopher Fred Keimel, Kuna Venkat Satya Rama Kishore, Kanakasabapathi Subramanian
  • Patent number: 7915696
    Abstract: An electrical through-connection, or via, that passes through a substrate to a bus on a first surface of the substrate. The via may be configured with an interlock such that the electrically conductive core of the via is constrained to thermally expand towards the second surface, away from the bus, thus preventing damage to the bus. The interlock may be a local constriction or enlargement of the via near the first surface of the substrate. The via may be greater in length along the bus than a unit spacing of beams in a parallel microswitch array actuated in unison along the bus. The via may be narrower in width than in length, and may form a trapezoidal geometry that is larger at the second surface of the substrate than at the first surface.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: March 29, 2011
    Assignee: General Electric Company
    Inventors: David Cecil Hays, Marco Francesco Aimi, Christopher Fred Keimel, Glenn Scott Claydon, Kanakasabapathi Subramanian, Oliver Charles Boomhower
  • Patent number: 7901970
    Abstract: A micro-electromechanical system (MEMS) based current & magnetic field sensor includes a MEMS-based magnetic field sensing component having a capacitive magneto-MEMS component, a compensator and an output component for sensing magnetic fields and for providing, in response thereto, an indication of the current present in a respective conductor to be measured. In one embodiment, first and second mechanical sense components are electrically conductive and operate to sense a change in a capacitance between the mechanical sense components in response to a mechanical indicator from a magnetic-to-mechanical converter.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: March 8, 2011
    Assignee: General Electric Company
    Inventors: Anis Zribi, Glenn Scott Claydon, Christopher James Kapusta, Laura Jean Meyer, Ertugal Berkcan, Wei-Cheng Tian
  • Patent number: 7876538
    Abstract: A system is presented. The system includes a micro-electromechanical system switch. Further, the system includes a balanced diode bridge configured to suppress arc formation between contacts of the micro-electromechanical system switch. A pulse circuit is coupled to the balanced diode bridge to form a pulse signal in response to a fault condition. An energy-absorbing circuitry is coupled in a parallel circuit with the pulse circuit and is adapted to absorb electrical energy resulting from the fault condition without affecting a pulse signal formation by the pulse circuit.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: January 25, 2011
    Assignee: General Electric Company
    Inventors: Joshua Isaac Wright, Kanakasabapathi Subramanian, William James Premerlani, John Norton Park
  • Patent number: 7875822
    Abstract: A multiphase current interrupter is provided for interrupting a phase current between two contacts in an electrical phase. The current interrupter includes a first ablative chamber disposed around contacts for a first electrical phase. The first chamber has an ablative material thereon that causes a shock wave when an electrical arc is generated in an arc zone for the first electrical phase during a separation of the contacts therein. The current interrupter further includes at least a second ablative chamber disposed around contacts for at least a second electrical phase. The second chamber has an ablative material thereon that causes a shock wave when an electrical arc is generated in an arc zone for the second electrical phase during a separation of the contacts therein. An interconnecting structure provides fluid communication between the first ablative chamber and the second ablative chamber. The interconnecting structure is adapted to dissipate a shock wave generated in any of the ablative chambers.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: January 25, 2011
    Assignee: General Electric Company
    Inventors: Thangavelu Asokan, Sunil Srinivasa Murthy, Kunal Ravindra Goray, Nimish Kumar, Adnan Kutubuddin Bohori
  • Patent number: 7854222
    Abstract: Heating devices such as self-cleaning ovens include at least one surface comprising metal oxide crystalline catalytic material disposed thereon. The metal oxide crystalline material includes perovskite and perovskite-like materials, pyrochlores, rare earth metal oxides, spinels, and combinations of the foregoing. Also disclosed herein are processes for process for forming a pyrocatalytic coating on a substrate.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: December 21, 2010
    Assignee: General Electric Company
    Inventors: Venkat Subramaniam Venkataramani, Hrishikesh Keshavan
  • Patent number: 7821749
    Abstract: An arc crowbar with electrodes separated by a gap in a protective case. Each electrode is connected to an electrically different conductor of a circuit. A sensor detects an arc flash condition on the circuit and signals a trigger circuit to send an electrical pulse to an arc-triggering device in the arc crowbar gap. The triggering device ionizes a portion of the gas between the electrodes, initiating a protective arc between the electrodes that absorbs energy from the power circuit and trips a breaker, eliminating the arc flash condition. The triggering device may be a plasma gun, especially one that injects plasma of an ablated material into the gap. The sensor may signal a circuit breaker to open in the power circuit. Arc flash sensor types may include a differential current sensor and/or an optical sensor.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: October 26, 2010
    Assignee: General Electric Company
    Inventors: Thangavelu Asokan, Gopichand Bopparaju, Adnan Kutubuddin Bohori
  • Patent number: 7808764
    Abstract: A system that includes micro-electromechanical system switching circuitry, such as may be made up of a plurality of micro-electromechanical switches, is provided. The plurality of micro-electromechanical switches may generally operate in a closed switching condition during system operation. A controller is coupled to the electromechanical switching circuitry. The controller may be configured to actuate at least one of the micro-electromechanical switches to a temporary open switching condition while a remainder of micro-electromechanical switches remains in the closed switching condition to conduct a load current and avoid interrupting system operation. The temporary open switching condition of the switch is useful to avoid a tendency of switch contacts to stick to one another.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: October 5, 2010
    Assignee: General Electric Company
    Inventors: Kathleen Ann O'Brien, Kanakasabapathi Subramanian, Nicole Christine Reeves Hedges, Michael Solomon Idelchik, Owen Jannis Schelenz
  • Patent number: 7795562
    Abstract: A dual coil induction cooking system and method for heating ferrous and non-ferrous cooking vessels. The system includes a first resonant circuit for inducing a current in a ferrous metal cooking vessel at a first frequency and a second resonant circuit, wired in a parallel combination with the first resonant circuit, for inducing a current in a non-ferrous metal cooking vessel at a second frequency. The system also includes a power source for powering the parallel combination, so that one of the first and the second resonant circuits is coupled to supply power through the parallel combination to a respective one of the cooking vessels. A method for coupling power to a load includes sweeping a parallel combination of resonant circuits with a variable frequency power, detecting a resonant frequency response corresponding to a metallic composition of the load, and simultaneously powering the parallel combination of resonant circuits at a frequency corresponding to the detected resonant frequency.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: September 14, 2010
    Assignee: General Electric Company
    Inventors: Michael Andrew de Rooij, John Stanley Glaser