Patents Represented by Attorney, Agent or Law Firm Richard D. Stone
  • Patent number: 5032251
    Abstract: A process and apparatus for achieving turbulent or fast fluidized bed regeneration of spent FCC catalyst in a bubbling bed regenerator having a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerator. A closed coke combustor vessel is added to the existing regenerator vessel, and spent catalyst is discharged into the coke combustor and regenerated in a turbulent or fast fluidized bed, and discharged up into a dilute phase transport which preferably encompasses, and is in a countercurrent heat exchange relationship with, the spent catalyst standpipe. Regenerated catalyst is discharged from the dilute phase transport riser, and collected in the bubbling dense bed surrounding the coke combustor. Catalyst may be recycled from the dense bed to the coke combustor for direct contact heat exchange. Catalyst coolers may be used on catalyst recycle lines to the coke combustor, or on the line returning regenerated catalyst to the cracking reactor.
    Type: Grant
    Filed: April 27, 1990
    Date of Patent: July 16, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Paul H. Schipper
  • Patent number: 5032252
    Abstract: A process and apparatus for achieving multistage, hot catalyst stripping of spent FCC catalyst in a bubbling bed regenerator having a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerator. A secondary or hot catalyst stripper is placed under the primary stripper and within the existing regenerator vessel. Spent catalyst from the primary stripper is heated in the secondary stripper by at least one of immersion in the bubbling dense bed of hot regenerated catalyst, addition of hot regenerated catalyst recovered from the discharged into the coke combustor and regenerated in a turbulent or fast fluidized bed, and discharged up into a dilute phase transport riser which preferably encompasses, and is in a countercurrent heat exchange relationship with, the spent catalyst standpipe. Regenerated catalyst is discharged from the dilute phase transport riser, and collected in the bubbling dense bed surrounding the coke combustor.
    Type: Grant
    Filed: April 27, 1990
    Date of Patent: July 16, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Paul H. Schipper
  • Patent number: 5021146
    Abstract: A process for regeneration of cracking catalyst while minimizing NO.sub.x emissions is disclosed. A Group IIIB based DeNO.sub.x additive is present in an amount and in a form which reduces NO.sub.x emissions. Relatively small amounts of lanthanum or yttrium oxides, or lanthanum titanate, preferably impregnated on a separate support are effective to reduce NO.sub.x produced in the regenerator. The additive converts NO.sub.x to nitrogen even when Pt CO combustion promoter and some excess oxygen are present in the regenerator.
    Type: Grant
    Filed: December 28, 1989
    Date of Patent: June 4, 1991
    Assignee: Mobil Oil Corporation
    Inventor: Arthur A. Chin
  • Patent number: 5021142
    Abstract: Turbine oils are produced from a distillate lube fraction by solvent extraction to remove aromatics, e.g., with furfural, then dewaxing and hydrofinishing to saturate residual aromatics. Treatment with an organic peroxide, such as ditertiary butyl peroxide (DTBP), increases viscosity to compensate for the viscosity loss during the hydrofinishing. Dewaxing may be solvent or catalytic dewaxing or both. Peroxide treatment also reduces cloud point.
    Type: Grant
    Filed: December 14, 1988
    Date of Patent: June 4, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Robert W. Bortz, William E. Garwood, Quang N. Le, Stephen S. Wong
  • Patent number: 5021222
    Abstract: This application is directed to a process and apparatus for regenerating an elutriable mixture of fluidized catalytic cracking (FCC) catalyst and a demetallizing additive. Deactivated catalyst and coke containing additive are added to a single dense bed regenerator. Within the regenerator, differences in settling velocity segregate the elutriable mixture into a lower dense bed containing most of the additive and a contiguous upper dense bed containing most of the FCC catalyst. Some regeneration gas is added to the lower dense bed to at least partially decoke the additive, while additional regeneration gas is added to the upper dense bed. Decoked additive and regenerated FCC catalyst are preferably withdrawn separately and charged to a riser reactor for demetallizing and catalytic cracking of heavy feed. Flue gas is withdrawn from the regenerator from a dilute phase vapor space above the single dense bed.
    Type: Grant
    Filed: November 20, 1989
    Date of Patent: June 4, 1991
    Assignee: Mobil Oil Corporation
    Inventor: Hartley Owen
  • Patent number: 5019239
    Abstract: A process and apparatus for fractionation of a superheated vapor in a fractionation column is disclosed. A conventional fractionator, having an inlet for hot vapors at the base, and a plurality of products withdrawn via side draws is modified by physically inverting some parts of the column. The superheated vapors are charged to an upper portion of the column, to contact and vaporize a liquid fraction pumped up from a lower portion of the column. The vaporized liquid is discharged as a vapor fraction to the base of the column from which the liquid fraction was obtained. Superheated vapor fed to the column is fractionated, but in a fractionator in which the hottest part of the column is not in the base of the column. The inverted fractionator, when used in conjunction with a riser cracking FCC reactor, greatly reduces thermal cracking in a transfer line moving superheated, cracked vapor from the reactor to the fractionator.
    Type: Grant
    Filed: November 21, 1989
    Date of Patent: May 28, 1991
    Assignee: Mobil Oil Corp.
    Inventor: Hartley Owen
  • Patent number: 5015362
    Abstract: Oxides of nitrogen (NO.sub.x) emissions are catalytically reduced by contacting a flue gas contain NO.sub.x with a carbonaceous substance, preferably sponge coke or coal, in the presence of a catalyst effective for promoting the reduction of NO.sub.x in the presence of such carbonaceous substances.
    Type: Grant
    Filed: December 28, 1989
    Date of Patent: May 14, 1991
    Assignee: Mobil Oil Corporation
    Inventor: Arthur A. Chin
  • Patent number: 5011592
    Abstract: A process for controlled, multi-stage regeneration of FCC catalyst is disclosed. A modified high efficiency catalyst regenerator, with a fast fluidized bed coke combustor, dilute phase transport riser, and second fluidized bed regenerates the catalyst in at least two stages. The primary stage of regeneration is in the coke combustor, at full CO oxidation conditions. The second stage of catalyst regeneration occurs in the second fluidized bed, at partial CO combustion conditions. The process permits regeneration of spent FCC catalyst while minimizing NOx exmissions and achieving significant reduction of SOx.
    Type: Grant
    Filed: July 17, 1990
    Date of Patent: April 30, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Paul H. Schipper
  • Patent number: 5006497
    Abstract: A catalytic cracking catalyst and process are disclosed using a catalyst containing: a matrix, a large pore molecular sieve, a shape selective paraffin cracking/isomerization zeolite and a shape selective aliphatic aromatization zeolite. An exemplary catalyst comprises dealuminized zeolite Y, optionally containing rare earth elements, HZSM-5, and gallium ZSM-5 in a matrix. The matrix contains and protects the relatively fragile zeolite components and acts as a sodium and metals sink. The large pore molecular sieve cracks large hydrocarbons to lighter paraffins and olefins. The shape selective paraffin cracking/isomerization component cracks/isomerizes the paraffins produced by the large pore molecular seive. The shape selective aliphatic aromatization catalyst converts light paraffins and olefins into aromatics. A single shape selective zeolite, e.g., ZSM-5 with a controlled amount of an aromatization component such as gallium, may promote both paraffin cracking/isomerization and aromatization.
    Type: Grant
    Filed: December 30, 1988
    Date of Patent: April 9, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Joseph A. Herbst, Hartley Owen, Paul H. Schipper
  • Patent number: 5002654
    Abstract: A process for regeneration of cracking catalyst while minimizing NO.sub.x emissions is disclosed. A zinc-based DeNO.sub.x catalyst is present in an amount and in a form which reduces NO.sub.x emissions. Relatively small amounts of zinc oxides impregnated on a separate support having little or no cracking activity are preferred. The zinc NO.sub.x reduction catalyst can be a separate particle additive, or can be made in situ by adding a solution or dispersion of zinc or a compound thereof to the cracking unit, or to the hydrocarbon feed to the cracking unit.
    Type: Grant
    Filed: December 28, 1989
    Date of Patent: March 26, 1991
    Assignee: Mobil Oil Corporation
    Inventor: Arthur A. Chin
  • Patent number: 5001096
    Abstract: The invention describes the preparation of novel cracking catalysts by surface coating conventional cracking catalysts with passivators that act as metals traps. The coating of passivators is weakly bound to the catalyst so as to permit the coating to continuously attrit off during catalytic cracking. The continuous flaking off of the coating exposes a new surface of the coating.
    Type: Grant
    Filed: April 7, 1989
    Date of Patent: March 19, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Pochen Chu, Albin Huss, Jr., Garry W. Kirker
  • Patent number: 5000841
    Abstract: A fluidized catalytic cracking process operates with a hot stripper to improve stripping of spent catalyst from the FCC process. The catalyst from the hot stripper is cooled by direct contact heat exchange with a source or cooled regenerated catalyst. Cooled catalyst may contact hot, stripped catalyst in the base of the stripper or downstream of the stripper. The cooled, stripped catalyst has reduced hydrogen, sulfur and coke content, improves regeneration efficiency, and reduces hydrothermal degradation of catalyst.
    Type: Grant
    Filed: April 10, 1989
    Date of Patent: March 19, 1991
    Assignee: Mobil Oil Corporation
    Inventor: Hartley Owen
  • Patent number: 5000838
    Abstract: A process for deasphalting a heavy hydrocarbon feed and catalytically cracking same is disclosed. Relatively low efficiency deasphalting is used to remove at least a majority of the metals in the feed, but to leave at least 10% of the asphaltenes and at least 10% of the solvent. This demetallized material is catalytically cracked. Preferably, the solvent used in deasphalting is derived from, and recycled from the catalytic cracking unit fractionator. Preferably a majority of the solvent recovery from the deasphalting step occurs in the catalytic cracking fractionator.
    Type: Grant
    Filed: December 13, 1989
    Date of Patent: March 19, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Mark P. Bartilucci, Solomon W. Jacob, Grant G. Karsner
  • Patent number: 4997800
    Abstract: A process for fluidized bed catalyst regeneration while minimizing emissions of NOx. The process uses a single, dense phase fluidized bed of particles wherein a combustible substance is burned to produce heat and a flue gas containing CO, CO2, O2 and NOx. A CO combustion promoter, present in an amount sufficient to increase the combustion of CO to CO2 in the dense bed, is disposed on particles having a settling velocity which is smaller than the settling velocity of the particles in the dense phase fluidized bed. CO combustion promoter segregates in the dense phase fluidized bed so that a majority of the combustion promoter is present in an upper one half of the dense bed. Maintaining a reducing atmosphere in the lower one half of the dense bed converts at least a portion of the NOx produced during combustion to nitrogen in the reducing atmosphere. Preferably an external means is provided to recover entrained CO combustion promoter from fines generated in the fluidized bed.
    Type: Grant
    Filed: March 13, 1989
    Date of Patent: March 5, 1991
    Assignee: Mobil Oil Corporation
    Inventor: Jonathan E. Child
  • Patent number: 4994173
    Abstract: Modified ZSM-5 type zeolite catalyst is prepared by controlled aging in a moving bed catalytic cracking unit. The modified catalyst exhibits significant olefin isomerization activity and reduced paraffin cracking activity. Hydrocarbons are cracked to products boiling in the motor fuel range, e.g., gasoline, by using the modified catalyst mixture comprising a ZSM-5 type zeolite and a conventional cracking catalyst. The ZSM-5 type zeolite is treated with partial pressure steam under conditions which increase the gasoline octane number of the product fuel without decreasing gasoline plus distillate yield. A process for changing a catalytic cracking unit's inventory from a conventional catalyst to a modified ZSM-5 type containing catalyst is also disclosed.
    Type: Grant
    Filed: January 25, 1990
    Date of Patent: February 19, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Chou Tai-Sheng, Frederick J. Krambeck, Paul H. Schipper
  • Patent number: 4994172
    Abstract: A process for preparing a pipelineable oil from a heavy crude oil by thermally treating the oil in the absence of added hydrogen, and under sufficiently severe conditions to induce the formation of an upgraded, low viscosity oil phase and a liquid asphalt phase that contains dispersed coke. The reaction is conducted under pressure sufficient to retain in the reactor most of the normally liquid hydrocarbons, under which conditions the two phases are readily separated and recovered solely by gravity settling. The process is readily adapted to oil field use with skid mounted units. The severity is adjusted to provide sufficient asphalt which, when burned, furnishes the steam required for production of the heavy crude oil.
    Type: Grant
    Filed: June 30, 1989
    Date of Patent: February 19, 1991
    Assignee: Mobil Oil Corporation
    Inventors: John S. Buchanan, Lillian A. Rankel, Tsoung-Yuan Yan
  • Patent number: 4994424
    Abstract: An improved process and apparatus are disclosed for fluidized catalytic cracking of hydrocarbons using a swirl type catalyst regenerator. Multiple, symmetrically spaced spent catalyst inlets are provided for addition of coked catalyst to the regenerator. Preferable a single catalyst outlet, for withdrawal of regenerated catalyst, is provided in the center of the regenerator. Use of multiple symmetrical inlets and a central catalyst outlet greatly reduce stagnant regions in the bed.
    Type: Grant
    Filed: November 6, 1989
    Date of Patent: February 19, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Tiberiu M. Leib, Ajit V. Sapre
  • Patent number: 4991521
    Abstract: A process and apparatus for fluidized bed combustion using a dense phase combustion zone over a dilute phase combustion zone. When used to regenerate FCC catalyst containing coke with relatively large amounts of NO.sub.x precursors, the catalyst is added to and partially regenerated in the dense phase zone and then falls down into the dilute phase zone. Most of the combustion air is added to the dilute phase and rises into and fluidizes the dense phase zone. NO.sub.x formed in the dilute phase is reduced to N.sub.2 in the dense phase.
    Type: Grant
    Filed: April 12, 1988
    Date of Patent: February 12, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Gary J. Green, Tsoung Y. Yan
  • Patent number: 4988432
    Abstract: A process for regeneration of cracking catalyst while minimizing NO.sub.x emissions is disclosed. A DeNOx additive is present in an amount and in a form which reduces NO.sub.x emissions, but does not passivate metals (such as Ni and V) deposited on the catalyst during the cracking reaction nor CO combustion promoter which may be present. Relatively small amounts of antimony oxides impregnated on a separate support having little or no cracking activity are preferred.
    Type: Grant
    Filed: December 28, 1989
    Date of Patent: January 29, 1991
    Assignee: Mobil Oil Corporation
    Inventor: Arthur A. Chin
  • Patent number: 4988653
    Abstract: A catalytic cracking catalyst mixture and process are disclosed. The mixture comprises (a) a cracking catalyst containing a matrix and a large pore molecular sieve and (b) separate particles of additive catalyst comprising at least one of a shape selective paraffin cracking/isomerization zeolite and a shape selective aliphatic aromatization zeolite. An exemplary catalyst mixture comprises dealuminized zeolite Y, optionally containing rare earth elements, in an alumina rich matrix and an additive catalyst of HZSM-5, and gallium ZSM-5 in a matrix. The alumina matrix of the cracking catalyst acts as a sodium and metals sink. The large pore molecular sieve catalyst cracks large hydrocarbons to lighter paraffins and olefins. The shape selective paraffin cracking/isomerization component cracks the paraffins produced by the large pore molecular sieve. The shape selective aliphatic aromatization catalyst converts light paraffins and olefins into aromatics. A single shape selective zeolite, e.g.
    Type: Grant
    Filed: December 30, 1988
    Date of Patent: January 29, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Joseph A. Herbst, Hartley Owen, Paul H. Schipper