Patents Represented by Attorney Richard J. Schulte
  • Patent number: 8337586
    Abstract: A method of making a crosslinked polyimide membrane is described. A monoesterified membrane is formed from a monoesterified polyimide polymer. The monoesterified membrane is subjected to transesterification conditions to form a crosslinked membrane. The monoesterified membrane is incorporated with an organic titanate catalyst before or after formation of the monoesterified membrane. A crosslinked polyimide membrane made using the aforementioned method and a method of using the membrane to separate fluids in a fluid mixture, such as methane and carbon dioxide, are also disclosed.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: December 25, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: John D. Wind, Stephen J. Miller, Oluwasijibomi O. Okeowo
  • Patent number: 8221531
    Abstract: A method of making a crosslinked polyimide membrane is described. A monoesterified membrane is formed from a monoesterified polyimide polymer. The monoesterified membrane is subjected to transesterification conditions to form a crosslinked membrane. The monoesterified membrane is incorporated with an organic titanate catalyst before or after formation of the monoesterified membrane. A crosslinked polyimide membrane made using the aforementioned method and a method of using the membrane to separate fluids in a fluid mixture also are described.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: July 17, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: John D. Wind, Stephen J. Miller, Oluwasijibomi O. Okeowo
  • Patent number: 8206667
    Abstract: A fixed bed membrane reactor is disclosed. The reactor has a housing including an inlet for receiving reactants and an outlet for discharging retentate streams of reaction products. The inlet and outlet are in fluid communication with a reaction zone in which the reactants may pass downstream from the inlet to the outlet with the reactants reacting to produce reaction products including water. The reactor further includes a membrane assembly disposed in fluid communication with the reaction zone. The membrane assembly includes at least one porous support with a water permselective membrane affixed thereto. The membrane allows water produced in the reaction zone to be selectively removed from the reaction zone as a permeate stream while allowing retentate reaction products to remain in the reaction zone and be discharged as a retentate stream.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: June 26, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Babak Fayyaz Najafi, Charles Leonard Kibby, Steven Xuqi Song, Daniel Chinn
  • Patent number: 7964150
    Abstract: A system, process, and apparatus are provided for the efficient continuous production of hydrates. Gas separated from a well fluid is fed into a hydrate reactor that is submerged under the sea at a predetermined depth. The hydrates generated in the hydrate reactor are then transferred to a marine vessel for shipping.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: June 21, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventor: John T. Balczewski
  • Patent number: 7516055
    Abstract: An enhanced multi-point statistical (MPS) simulation is disclosed. A multiple-grid simulation approach is used which has been modified from a conventional MPS approach to decrease the size of a data search template, saving a significant amount of memory and cpu-time during the simulation. Features used to decrease the size of the data search template include: (1) using intermediary sub-grids in the multiple-grid simulation approach, and (2) selecting a data template that is preferentially constituted by previously simulated nodes. The combination of these features allows saving a significant amount of memory and cpu-time over previous MPS algorithms, yet ensures that large-scale training structures are captured and exported to the simulation exercise.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: April 7, 2009
    Assignee: Chevron U.S.A. Inc
    Inventor: Sebastien B. Strebelle
  • Patent number: 7513935
    Abstract: The present invention provides a method for preparing silica containing molecular sieves which may be mixed with an organic polymer to create a mixed matrix membrane. Further, this invention includes a method of making such a mixed matrix membrane and the membrane itself. A process for separating component gases from a mixture using the subject mixed matrix membrane is also described. The method for preparing silica containing molecular sieves comprises super water washing silica containing molecular sieves to produce water washed molecular sieves which are substantially free of surface remnants. Super water washing also ideally lowers the concentration of alkali metals in the molecular sieves.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: April 7, 2009
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stephen J. Miller, Lun-Teh Yuen
  • Patent number: 7376517
    Abstract: The present invention includes a method for determining interval values of seismic quality factor, Q, from seismic data. Seismic data is recorded and preprocessed as necessary. Estimates of amplitude spectra are determined from the seismic data. Logarithms are taken of the amplitude spectra and weights derived from the amplitude spectra. Interval values of seismic quality factor, Q, are determined by performing a weighted fit to the log-amplitude spectra with a function that is parameterized by an initial wavelet, an attenuation profile (1/Q) and an absolute-scaling profile.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: May 20, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventor: James E. Rickett
  • Patent number: 7363158
    Abstract: A method for creating a stratigraphic model is provided. A core is obtained from a wellbore and a detailed graphic core description is created. Wireline data, including a borehole image, is obtained for a cored interval corresponding to the core and processed into an interpretable borehole image. The core description is compared with the interpretable borehole image to create a catalogue of geologic image facies. The borehole image from the entire interval of interest is compared to the catalogue to create a preliminary pseudocore description. The interpretable borehole image is interactively examined and compared with the preliminary pseudocore description to create a master pseudocore interpretation. A second master pseudocore is developed for a second wellbore. A stratigraphic model, and subsequently a reservoir model, may then be created by correlating between the master pseudocores of the first and second wellbores.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: April 22, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Charles E. Stelting, William J. Schweller, William C. Corea, William H. Crane, Lisa R. Goggin
  • Patent number: 7306647
    Abstract: A mixed matrix membrane for separating gas components from a mixture of gas components is disclosed. The membrane comprises a continuous phase polymer with inorganic porous particles, preferably molecular sieves, interspersed in the polymer. The polymer has a CO2/CH4 selectivity of at least 20 and the porous particles have a mesoporosity of at least 0.1 cc STP/g. The mixed matrix membrane exhibits an increase in permeability of least 30% with any decrease in selectivity being no more than 10% relative to a membrane made of the neat polymer. The porous particles may include, but are not limited to, molecular sieves such as CVX-7 and SSZ-13, and/or other molecular sieves having the required mesoporosity. A method for making the mixed matrix membrane is also described. Further, a method is disclosed for separating gas components from a mixture of gas components using the mixed matrix membrane with mesoporous particles.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: December 11, 2007
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stephen J. Miller, Alexander Kuperman, De Q. Vu
  • Patent number: 7268094
    Abstract: The present invention provides a method for preparing silica containing molecular sieves which may be mixed with an organic polymer to create a mixed matrix membrane. Further, this invention includes a method of making such a mixed matrix membrane and the membrane itself. A process for separating component gases from a mixture using the subject mixed matrix membrane is also described. The method for preparing silica containing molecular sieves comprises super water washing silica containing molecular sieves to produce water washed molecular sieves which are substantially free of surface remnants. Super water washing also ideally lowers the concentration of alkali metals in the molecular sieves.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: September 11, 2007
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stephen J. Miller, Lun-Teh Yuen
  • Patent number: 7166146
    Abstract: A mixed matrix membrane is provided which comprises a continuous phase organic polymer and small pore molecular sieves dispersed therein. The molecular sieves have a largest minor crystallographic free diameter of 3.6 Angstroms or less. When these molecular sieves are properly interspersed with a continuous phase polymer, the membrane will exhibit a mixed matrix membrane effect, i.e., a selectivity increase of at least 10% relative to a neat membrane containing no molecular sieves. Finally, methods for making and using such mixed matrix membranes to separate gases from a mixture containing two or more gases are also disclosed.
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: January 23, 2007
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stephen J. Miller, Alexander Kuperman, De Q. Vu
  • Patent number: 7079953
    Abstract: A method for creating a facies probability cube is disclosed. A S-grid containing facies is first created. The grid includes layers of cells and columns of cells. Vertical facies proportion data for the layers of cells is derived from sources such as well data, conceptual vertical geologic sections and graphs describing the proportion of facies found in each of the layers. Areal depocenter maps are created which have defined boundaries to create depocenter regions in which respective facies are likely to occur. Ideally, the boundaries for the depocenter regions for each of the facies are sequentially and independently defined. Horizontal or map facies proportion data are generated for the columns of cells preferably by filtering the depocenter regions so that the proportion of each of the facies ranges from a maximum value to a minimum value.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: July 18, 2006
    Assignee: Chevron U.S.A. Inc.
    Inventors: Julian Arthur Thorne, Marjorie E. Levy, Andrew William Harding, Deyi Xie
  • Patent number: 7069149
    Abstract: A computer implemented method for interpreting faults from a fault-enhanced 3-D seismic attribute cube. The method includes the steps of extracting faults from a 3-D seismic attribute cube, and of calculating a minimum path value for each voxel of the 3-D seismic attribute cube. A fault network skeleton is extracted from the 3-D seismic attribute cube by utilizing the minimum path values which correspond to voxels within the 3-D seismic attribute cube. The individual fault networks are then labeled, and a vector description of the fault network skeleton is created. The fault network skeleton is subdivided into individual fault patches wherein the individual fault patches are the smallest, non-intersecting, non-bifurcating patches that lie on only one geologic fault. The individual fault patches are then correlated into a representation of geologic faults.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: June 27, 2006
    Assignee: Chevron U.S.A. Inc.
    Inventors: Douglas Francis Goff, Luc Vincent, Kevin L. Deal, William S. Kowalik, Sebastien Bombarde, Sandra Lee, William R. Volz, Richard C. Jones
  • Patent number: 7021378
    Abstract: A method for retaining a treatment chemical in a subterranean formation containing hydrocarbons is disclosed. The method includes first preparing an emulsion. The emulsion contains an oil continuous phase and first and second aqueous phases. The first aqueous phase includes a treatment chemical, such as a scale inhibitor. The second aqueous phase comprises a retention enhancing chemical which is to be reacted with the treatment chemical in the subterranean formation. Preferably, the first and second aqueous phases remain generally separately dispersed and stable within the oil continuous phase prior to being introduced into the subterranean formation. The emulsion is then placed down a well bore and into the subterranean formation.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: April 4, 2006
    Assignee: Chevron U.S.A.
    Inventor: Gabriel Prukop
  • Patent number: 6950371
    Abstract: A method for enhancing signal-to-noise (S/N) ratio of seismic data is presented. An ensemble of input traces is decomposed into a plurality of frequency bands of traces. Trace and signal power and then a maximum allowable signal-to-noise ratio are estimated for each frequency band. Weights are calculated which are functions of the inverse noise power or rms. The amplitudes in each of the traces are reformed using a fitting function which utilizes the estimated weights to create true relative amplitude signal enhanced traces. The weighting function has data adaptive parameters which can be changed to accommodate noise characteristics such coherency, incoherency, Gaussian and non-Gaussian distributions, etc. The method may be applied across many different coordinate systems. The method may be applied iteratively to seismic data to shape the noise distribution of the seismic data.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: September 27, 2005
    Assignee: Chevron U.S.A. Inc.
    Inventors: E. Fredrick Herkenhoff, Dennis G. Bones, Kendall Bong Hu Louie
  • Patent number: 6938707
    Abstract: A method and a system for minimizing circulating fluid return losses during drilling of a well bore are disclosed. Circulating fluid, or mud, is heated above conventional temperatures for circulating fluids. The heated circulating fluid then contacts a region of a formation, in which a well bore is to be drilled, maintaining the formation at a relative higher temperature than if no special sources of heat were used to add heat to the circulating fluid. The region, at the relatively higher temperature, has a tendency to expand and to be placed in a relatively higher compressive state as compared to a formation at a lower temperature. Consequently, the use of the heated circulating fluid minimizes fracture initiation and growth and circulation fluid losses into the formation.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: September 6, 2005
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph H. Schmidt, Manuel E. Gonzalez, John Lofton, James B. Bloys, Gregory P. Pepin
  • Patent number: 6937014
    Abstract: The present invention provides a method for obtaining a multi-dimensional proton density distribution from a system of nuclear spins. A plurality of nuclear magnetic resonance (NMR) data is acquired from a fluid containing porous medium having a system of nuclear spins. A multi-dimensional inversion is performed on the plurality of nuclear magnetic resonance data using an inversion algorithm to solve a mathematical problem employing a single composite kernel to arrive at a multi-dimensional proton density distribution. Ideally, the mathematical problem can be cast in the form of a Fredholm integral of the first kind wherein a two or more kernels can be reduced to a single composite kernel for ease of solution. Preferably, a series of conventional CPMG pulse sequences, using a conventional NMR tool, can be used to excite the system of nuclear spins.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: August 30, 2005
    Assignee: Chevron U.S.A. Inc.
    Inventors: Boqin Sun, Keh-Jim Dunn
  • Patent number: 6860328
    Abstract: The present invention provides a method for enhancing the production of hydrocarbons from a subterranean formation. A hydrocarbon bearing formation, surrounding a well bore, is fractured with a fracturing fluid to create one or more fractures in the formation. The formation includes a higher permeability zone and a lower permeability zone with the fractures extending across both the higher and lower permeability zones. The lower permeability zone may contain a substantially higher concentration of hydrocarbons, oil and gas, than does the higher permeability zone which may generally be depleted of hydrocarbons. Proppant is then selectively positioned, such as by allowing the proppant to “float” in a carrier fluid to the top of the fracture, with a majority of the proppant being positioned in the lower permeability zone. The fracture is allowed to close about the proppant to create at least one high conductivity channel in the lower permeability zone.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: March 1, 2005
    Assignee: Chevron U.S.A. Inc.
    Inventors: Manuel E. Gonzalez, Joseph H. Schmidt
  • Patent number: 6823297
    Abstract: A multi-scale finite-volume (MSFV) method to solve elliptic problems with a plurality of spatial scales arising from single or multi-phase flows in porous media is provided. Two sets of locally computed basis functions are employed. A first set of basis functions captures the small-scale heterogeneity of the underlying permeability field, and it is computed to construct the effective coarse-scale transmissibilities. A second set of basis functions is required to construct a conservative fine-scale velocity field. The method efficiently captures the effects of small scales on a coarse grid, is conservative, and treats tensor permeabilities correctly. The underlying idea is to construct transmissibilities that capture the local properties of a differential operator. This leads to a multi-point discretization scheme for a finite-volume solution algorithm. Transmissibilities for the MSFV method are preferably constructed only once as a preprocessing step and can be computed locally.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: November 23, 2004
    Assignees: Chevron U.S.A. Inc., Schlumberger Technology Corporation
    Inventors: Patrick Jenny, Seong Lee, Hamdi A. Tchelepi
  • Patent number: 6810332
    Abstract: A method for computing complexity, confidence and technical maturity indices for the evaluation of a reservoir is disclosed. The method comprising the steps of (a) making estimates of reservoir components which are associated with a subsurface reservoir evaluation; (b) making estimates of confidence values for the estimates of the reservoir components; and (c) computing an evaluation index for the evaluation of the reservoir based upon at least one of the estimates of the reservoir components and the estimates of the confidence values. Complexity and confidence scores are assigned to the respective estimates of the reservoir components and estimates of confidence values. These scores are combined to produce complexity and confidence indices. This evaluation tool is intended to help improve the assessment of the reliability of probabilistic reservoir production forecasts. The tool provides an indicator of the reliability of the forecast production profiles and reserves estimations.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: October 26, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventor: Christopher J. Harrison