Abstract: A process for oxidation of hydrocarbon, comprising contacting said hydrocarbon with hydrogen peroxide in the presence of a catalytically effective amount of crystalline, titanosilicate zeolite TS-1 catalyst for a time and at a temperature effective to oxidize said hydrocarbon, wherein the catalyst is in the form of binderless, shaped particles comprising titanosilicate, TS-1 and titanosilicate TS-1 precursors and having a defined cross sectional diameter. Also, a process for epoxidation of olefins using crystalline, titanosilicate zeolite TS-1 catalyst. Also a process for oxidation of hydrocarbon using crystalline, titanosilicate TS-1 catalyst, wherein the catalyst is in the form of binderless, shaped particles having a crystallite size of less than 0.2 micron and a defined cross sectional diameter.
Abstract: The present invention relates to new crystalline molecular sieve SSZ-74 prepared using a hexamethylene-1,6-bis-(N-methyl-N-pyrrolidinium) dication as a structure-directing agent, and its use in treating engine exhaust.
Abstract: The present invention relates to new crystalline molecular sieve SSZ-75 having STI framework topology prepared using a tetramethylene-1,4-bis-(N-methylpyrrolidinium) dication as a structure-directing agent and its use in treating engine exhaust.
Abstract: The present invention relates to new crystalline molecular sieve SSZ-75 having STI framework topology prepared using a tetramethylene-1,4-bis-(N-methylpyrrolidinium) dication as a structure-directing agent and its use in catalysts for converting oxygenates, e.g., methanol, to olefins.
Abstract: A process for reduction of oxides of nitrogen contained in a gas stream comprising contacting the gas stream with a boron-containing molecular sieve, the boron-containing molecular sieve having the CHA crystal structure and comprising (1) silicon oxide and (2) boron oxide or a combination of boron oxide and aluminum oxide, iron oxide, titanium oxide, gallium oxide and mixtures thereof; and wherein the mole-ratio of silicon oxide to boron oxide in said boron-containing molecular sieve is between 15 and 125. A method for reduction of oxides of nitrogen, comprising a) selecting the boron-containing molecular sieve; and b) contacting a gas stream with the molecular sieve. A method for reduction of oxides, comprising: a) selecting the boron-containing molecular sieve containing a metal or metal ions capable of catalyzing the reduction of the oxides of nitrogen; and b) contacting an exhaust stream of an internal combustion engine with the molecular sieve.
Abstract: The present invention relates to new crystalline molecular sieve SSZ-75 having STI topology prepared using a tetramethylene-1,4-bis-(N-methylpyrrolidinium) dication as a structure-directing agent, and methods for synthesizing SSZ-75.
Type:
Grant
Filed:
June 1, 2007
Date of Patent:
May 11, 2010
Assignee:
Chevron U.S.A. Inc.
Inventors:
Stacey I. Zones, Allen W. Burton, Jr., Kenneth Ong
Abstract: The present invention rebates to a process for preparing zeolites having the MTT framework topology defined by the connectivity of the tetrahedral atoms in the zeolite, such as zeolites SSZ-32 and ZSM-23, using an N,N,N,N?,N?,N?-hexamethyl-propane-1,3-diammonium dication as a structure directing agent.
Abstract: The present invention relates to new crystalline molecular sieve SSZ-75 prepared using a tetramethylene-1,4-bis-(N-methylpyrrolidinium) dication as a structure-directing agent, and its use in catalysts for hydrocarbon conversion reactions.
Type:
Grant
Filed:
June 1, 2007
Date of Patent:
January 26, 2010
Assignee:
Chevron U.S.A. Inc.
Inventors:
Stacey I. Zones, Allen W. Burton, Jr., Theodorus Ludovicus Michael Maesen, Berend Smit, Edith Beerdsen
Abstract: The present invention relates to new crystalline molecular sieve SSZ-74 prepared using an hexamethylene-1,6-bis-(N-methyl-N-pyrrolidinium) dication as a structure-directing agent, and processes employing SSZ-74 in a catalyst.
Abstract: The present invention relates to new crystalline molecular sieve SSZ-70 prepared using a N,N?-diisopropyl imidazolium cation as a structure-directing agent, methods for synthesizing SSZ-70 and processes employing SSZ-70 in a catalyst.
Abstract: A process is disclosed for preparing a zinc-containing molecular sieve having IFR framework topology and having zinc atoms in its crystal framework, said process comprising: (a) preparing an aqueous mixture containing sources of silicon oxide, zinc oxide, an alkali metal, and an N-benzyl-1,4-diazabicyclo[2.2.2]octane cation having an anionic counterion which is not detrimental to the formation of the molecular sieve; and (b) maintaining the aqueous mixture under conditions sufficient to form crystals of the molecular sieve.
Abstract: The present invention relates to new crystalline molecular sieve SSZ-74 prepared using a hexamethylene-1,6-bis-(N-methyl-N-pyrrolidinium) dication as a structure directing agent, and its use in catalysts for converting oxygenates, e.g., methanol, to olefins.
Abstract: A process for producing methylamine or dimethylamine comprising reacting methanol, dimethyl ether or a mixture thereof, and ammonia in the gaseous phase in the presence of a catalyst comprising a boron-containing molecular sieve having the CHA crystal structure; and comprising (1) silicon oxide and (2) boron oxide or a combination of boron oxide and aluminum oxide, iron oxide, titanium oxide, gallium oxide and mixtures thereof; and wherein the mole ratio of silicon oxide to boron oxide in said boron-containing molecular sieve is between 15 and 125. Also a method for producing methylamine or dimethylamine comprising selecting the boron-containing molecular sieve having the CHA crystal structure and the desired mole ratio of silicon oxide to boron oxide and reacting methanol, diemethyl ether or a mixture thereof and ammonia in the presence of the catalyst.
Abstract: The present invention relates to new crystalline molecular sieve SSZ-47B prepared using a N-cyclopentyl-1,4-diazabicyclo[2.2.2] octane cation as a structure-directing agent and an amine too large to fit in the pores of the molecular sieve nonasil, methods for synthesizing SSZ-47B and processing employing SSZ-47B in a catalyst.
Abstract: The present invention relates to new crystalline molecular sieve SSZ-56 prepared using a N,N-diethyl-2-methyldecahydroquinolinium cation as a structure-directing agent and its use in minimizing cold start emissions from engines.
Abstract: The present invention relates to new crystalline molecular sieve SSZ-74 prepared using a hexamethylene-1,6-bis-(N-methyl-N-pyrrolidinium)dication as a structure-directing agent, and its use in catalysts for synthesizing amines.
Abstract: A method is disclosed for synthesizing high-silica molecular sieves having the CHA crystal structure using a structure directing agent comprising a cation derived from 1-adamantamine, 3-quinuclidinol or 2-exo-aminonorbornane. The synthesis is conducted in the absence of fluorine.
Abstract: A composition of and a method of making high performance hollow fiber membranes is described. The membranes have a high resistance to plasticization by use of a predetermined amount of crosslinking. The preferred polymer material for the membrane is a polyimide polymer comprising covalently bonded ester crosslinks. The resultant hollow fiber membrane exhibits a high permeability of CO2 in combination with a high CO2/CH4 selectivity. Another embodiment provides a method of making the hollow fiber membrane from a monesterified polymer followed by final crosslinking after hollow fiber formation.
Type:
Grant
Filed:
June 10, 2005
Date of Patent:
July 24, 2007
Assignee:
Chevron U.S.A. Inc.
Inventors:
William J. Koros, David Wallace, John Wind, Stephen J. Miller, Claudia Staudt-Bickel
Abstract: An all-silica zeolite having the IFR framework topology can be directly synthesized by preparing a reaction mixture comprising (1) an active source of silicon oxide, (2) a structure directing agent comprising a N-benzyl-1,4-diazabicyclo[2.2.2] octane cation, (3) an active source of hydroxide and (4) water and maintaining the reaction mixture under conditions sufficient to form crystals of the zeolite.
Abstract: The present invention relates to new crystalline molecular sieve SSZ-56 prepared using a N,N-diethyl-2-methyldecahydroquinolinium cation as a structure-directing agent, methods for synthesizing SSZ-56 and processes employing SSZ-56 in a catalyst.