Patents Represented by Attorney, Agent or Law Firm Robert A. McLauchlan
  • Patent number: 6340769
    Abstract: A method of forming an iridium-containing film on a substrate, from an iridium-containing precursor thereof which is decomposable to deposit iridium on the substrate, by decomposing the precursor and depositing iridium on the substrate in an oxidizing ambient environment which may for example contain an oxidizing gas such as oxygen, ozone, air, and nitrogen oxide. Useful precursors include Lewis base stabilized Ir(I) &bgr;-diketonates and Lewis base stabilized Ir(I) &bgr;-ketoiminates. The iridium deposited on the substrate may then be etched for patterning an electrode, followed by depositing on the electrode a dielectric or ferroelectric material, for fabrication of thin film capacitor semiconductor devices such as DRAMs, FRAMs, hybrid systems, smart cards and communication systems.
    Type: Grant
    Filed: December 3, 1999
    Date of Patent: January 22, 2002
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Thomas H. Baum, Chongying Xu
  • Patent number: 6338312
    Abstract: An ion implantation process system, including an ion implanter apparatus for carrying out an ion implantation process. A supply of source gas for the ion implantation process is arranged to flow to the ion implanter apparatus, which discharges an effluent gas stream including ionization products of the source gas during the ion implantation process. The system includes an effluent abatement apparatus for removing hazardous effluent species from the effluent gas stream. The source gas may be furnished from a low pressure gas source in which the source gas is sorptively retained in a vessel on a sorbent medium having affinity for the source gas, and desorbed for dispensing to the process system. A novel scrubbing composition may be employed for effluent treatment, and the scrubbing composition breakthrough of scrubbable component may be monitored with a device such as a quartz microbalance monitor.
    Type: Grant
    Filed: April 15, 1998
    Date of Patent: January 15, 2002
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Michael W. Hayes, Mark R. Holst, Jose I. Arno
  • Patent number: 6338873
    Abstract: Novel Group II metal MOCVD precursor compositions are described having utility for MOCVD of the corresponding Group II metal-containing films. The complexes are Group II metal &bgr;-diketonate Lewis base adducts having ligands such as: (i) amines bearing terminal NH2 groups; (ii) imine ligands formed as amine (i)/carbonyl reaction products; (iii) combination of two or more of the foregoing ligands (i)-(ii), and (iv) combination of one or more of the foregoing ligands (i)-(ii) with one or more other ligands or solvents. The source reagent complexes of barium and strontium are usefully employed in the formation of barium strontium titanate and other Group II doped thin-films on substrates for microelectronic device applications, such as integrated circuits, ferroelectric memories, switches, radiation detectors, thin-film capacitors, microelectromechanical structures (MEMS) and holographic storage media.
    Type: Grant
    Filed: July 6, 2000
    Date of Patent: January 15, 2002
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Witold Paw, Thomas H. Baum
  • Patent number: 6333010
    Abstract: An effluent gas stream treatment system for treatment of gaseous effluents such as waste gases from semiconductor manufacturing operations. The effluent gas stream treatment system comprises a pre-oxidation treatment unit, which may for example comprise a scrubber, an oxidation unit such an electrothermal oxidizer, and a post-oxidation treatment unit, such as a wet or dry scrubber. The effluent gas stream treatment system of the invention may utilize an integrated oxidizer, quench and wet scrubber assembly, for abatement of hazardous or otherwise undesired components from the effluent gas stream. Gas or liquid shrouding of gas streams in the treatment system may be provided by high efficiency inlet structures.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: December 25, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Mark Holst, Kent Carpenter, Scott Lane, Prakash V. Arya
  • Patent number: 6331211
    Abstract: A method and apparatus for forming a low dielectric constant polymeric film on a substrate, by liquid delivery of a parylene precursor reagent, in the form of an organic solution or a neat liquid, subsequent flash vaporization of the neat liquid or organic solution, pyrolytic “cracking” of the precursor to form the reactive monomer and/or reactive radical species, and condensation and polymerization of the monomer and/or reactive radical species to form a low dielectric constant polymeric film on the substrate. The low dielectric constant polymeric film may comprise a parylene film, formed from a precursor such as [2.2]paracyclophane, an alkyl- and/or halo-substituted derivative thereof, or an analogous compound of a p-xylene derivative.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: December 18, 2001
    Assignee: Advanced Technology Material, Inc.
    Inventors: Chongying Xu, Thomas H. Baum, Ralph J. Carl, Edward A. Sturm
  • Patent number: 6323168
    Abstract: A semiconductor wafer cleaning formulation for use in post plasma ashing semiconductor fabrication comprising the following components in the percentage by weight ranges shown: chelating agent 1-15% water 25-99%  polar organic solvent 0-60% In the preferred embodiment the chelating agent is catechol (1,2-dihydroxybenzene) and the polar organic solvent is gamma butyrolactone (BLO).
    Type: Grant
    Filed: July 3, 1996
    Date of Patent: November 27, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Thomas J. Kloffenstein, Daniel N. Fine
  • Patent number: 6322756
    Abstract: An effluent gas stream treatment system for treatment of gaseous effluents such as waste gases from semiconductor manufacturing operations. The effluent gas stream treatment system comprises an oxidation unit to which an oxygen-containing gas such as ozone may be added, with input of energy (e.g., thermal, radio frequency, electrical, microwave, etc.), to effect oxidation of oxidizable species in the effluent, such as halocompounds (e.g., chlorofluorocarbons, perfluorocarbons), CO, NF3, nitrogen oxides, and sulfur oxides). The effluent gas stream treatment system may include a wet scrubber associated with the oxygen-containing gas source, so that the gas stream is contacted with the oxygen-containing gas during the wet scrubbing operation, to enhance removal of oxidizable species in the gas stream during treatment.
    Type: Grant
    Filed: May 7, 1999
    Date of Patent: November 27, 2001
    Assignee: Advanced Technology and Materials, Inc.
    Inventors: Jose I. Arno, Mark Holst, Kent Carpenter, Scott Lane
  • Patent number: 6322600
    Abstract: A planarization composition is set forth for chemical mechanical planarization of dielectric layers for semiconductor manufacture. The composition comprises spherical silica particles having an average diameter of from 30 nm to about 400 nm, and a narrow range of particle sizes, wherein about 90% of the particles is within 20% of the average particle diameter. The composition includes a liquid carrier comprising up to about 9% alcohol and an amine hydroxide in the amount of about 0.2 to about 9% by weight. The pH of the composition is in the range of about 9 to about 11.5, and the remainder of the solution is water. The composition has low amounts of metal ions, and the composition is used for thinning, polishing and planarizing interlayer dielectric thin films, shallow trench isolation structures, and isolation of gate structures. The invention also comprises methods for using the planarization composition in the manufacture of semiconductor devices.
    Type: Grant
    Filed: April 22, 1998
    Date of Patent: November 27, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Richard Brewer, Thomas J. Grebinski, James E. Currie, Michael Jones, William Mullee, Ann Nguyen
  • Patent number: 6320213
    Abstract: A dynamic random access memory device (100) includes storage capacitors using a high dielectric constant material, such as, BaSrTiO3, SrBi2Ta2O9 and PbZrTiO3, for the capacitors' insulator. The device includes a conductive plug (106) formed over and connecting with a semiconductor substrate (102). A buffer layer (107) of titanium silicide lays over the plug, and this layer serves to trap “dangling” bonds and to passivate the underlying surface. A first diffusion barrier layer (108), e.g., titanium aluminum nitride, covers the titanium silicide. A capacitor first electrode (110) lays over the diffusion barrier layer. The high dielectric constant material (112) is laid over the capacitor first electrode. A capacitor second electrode (116) is laid over the high dielectric constant material. A second diffusion barrier layer (120) is deposited on the capacitor second electrode. A conductor, such as aluminum (130), is laid over the second diffusion barrier layer.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: November 20, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Peter S. Kirlin, Scott R. Summerfelt, Paul McIntryre
  • Patent number: 6319565
    Abstract: A metal hydride derivative wherein at least one hydrogen atom is replaced by deuterium (21H) or tritium (31H) isotope. The metal constituent of such metal hydride may, be a Group III, IV or V metal or a transition metal, e.g., antimony, aluminum, gallium, tin, or germanium. The isotopically stabilized metal hydride derivatives of the invention are useful as metal source compositions for chemical vapor deposition, assisted chemical vapor deposition (e.g., laser-assisted chemical vapor deposition, light-assisted chemical vapor deposition, plasma-assisted chemical vapor deposition and ion-assisted chemical vapor deposition), ion implantation, molecular beam epitaxy, and rapid thermal processing.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: November 20, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Michael A. Todd, Thomas H. Baum, Gautam Bhandari
  • Patent number: 6316797
    Abstract: A novel lead zirconium titanate (PZT) material having unique properties and application for PZT thin film capacitors and ferroelectric capacitor structures, e.g., FeRAMs, employing such thin film material. The PZT material is scalable, being dimensionally scalable, pulse length scalable and/or E-field scalable in character, and is useful for ferroelectric capacitors over a wide range of thicknesses, e.g., from about 20 nanometers to about 150 nanometers, and a range of lateral dimensions extending to as low as 0.15 &mgr;m. Corresponding capacitor areas (i.e., lateral scaling) in a preferred embodiment are in the range of from about 104 to about 10−2 &mgr;m2. The scalable PZT material of the invention may be formed by liquid delivery MOCVD, without PZT film modification techniques such as acceptor doping or use of film modifiers (e.g., Nb, Ta, La, Sr, Ca and the like).
    Type: Grant
    Filed: February 19, 1999
    Date of Patent: November 13, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Peter C. Van Buskirk, Jeffrey F. Roeder, Steven M. Bilodeau, Michael W. Russell, Stephen T. Johnston, Daniel J. Vestyck, Thomas H. Baum
  • Patent number: 6306807
    Abstract: The present invention comprises formulations for stripping wafer residues which originate from a halogen based plasma metal etching followed by oxygen plasma ashing.
    Type: Grant
    Filed: May 17, 1999
    Date of Patent: October 23, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventors: William A. Wojtczak, George Guan, Long Nguyen
  • Patent number: 6303391
    Abstract: A low temperature CVD process using a tris (&bgr;-diketonate) bismuth precursor for deposition of bismuth ceramic thin films suitable for integration to fabricate ferroelectric memory devices. Films of amorphous SBT can be formed by CVD and then ferroannealed to produce films with Aurivillius phase composition having superior ferroelectric properties suitable for manufacturing high density FRAMs.
    Type: Grant
    Filed: November 20, 1997
    Date of Patent: October 16, 2001
    Assignees: Advanced Technology Materials, Inc., Siemens Aktiengesellschaft
    Inventors: Frank S. Hintermaier, Christine Dehm, Wolfgang Hoenlein, Peter C. Van Buskirk, Jeffrey F. Roeder, Bryan C. Hendrix, Thomas H. Baum, Debra A. Desrochers
  • Patent number: 6296026
    Abstract: A chemical delivery system which utilizes multiple techniques to achieve a suitable chemical purge of the chemical delivery system is provided. A purge sequence serves to purge the manifold and canister connection lines of the chemical delivery system prior to removal of an empty chemical supply canister or after a new canister is installed. More particularly, a purge technique which may utilizes a variety of combinations of a medium level vacuum source, a hard vacuum source, and/or a liquid flush system is disclosed. By utilizing a plurality of purge techniques, chemicals such as TaEth, TDEAT, BST, etc. which pose purging difficulties may be efficiently purged from the chemical delivery system. The chemical delivery system may also be provided with an efficient and conveniently located heater system for heating the chemical delivery system cabinet.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: October 2, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventors: John N. Gregg, Craig M. Noah, Robert M. Jackson
  • Patent number: 6295861
    Abstract: A sensor device for detecting the presence of a gas species in a gas environment susceptible to the presence of same. The sensor device may include a piezoelectric crystal coated with a sensor material having adsorptive affinity for the gas species, with an electric oscillator arranged for applying an oscillating electric field to the piezoelectric crystal to generate an output frequency therefrom indicative of the presence of the gas species when present in the gas environment, when the gas environment is exposed to the piezoelectric crystal. Another aspect of the invention involves a porous polymeric material that may be employed as a sensor material on a piezoelectric crystal sensor device, as well as a quartz microbalance holder that enables reactor gas monitoring. The sensor device alternatively may comprise an optical sensor arranged in a non-contaminating fashion in relation to the gas environment being monitored.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: October 2, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Glenn M. Tom, Mackenzie E. King
  • Patent number: 6296025
    Abstract: A chemical delivery system which utilizes multiple techniques to achieve a suitable chemical purge of the chemical delivery system is provided. A purge sequence serves to purge the manifold and canister connection lines of the chemical delivery system prior to removal of an empty chemical supply canister or after a new canister is installed. More particularly, a purge technique which may utilizes a variety of combinations of a medium level vacuum source, a hard vacuum source, and/or a liquid flush system is disclosed. By utilizing a plurality of purge techniques, chemicals such as TaEth, TDEAT, BST, etc. which pose purging difficulties may be efficiently purged from the chemical delivery system. The chemical delivery system may also be provided with an efficient and conveniently located heater system for heating the chemical delivery system cabinet.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: October 2, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventors: John N. Gregg, Craig M. Noah, Robert M. Jackson
  • Patent number: 6280651
    Abstract: The formulations of the present invention etch doped silicon oxide compounds, such as BPSG and PSG layers, at rates greater than or equal to the etch rate of undoped silicon oxide such as thermal oxide. The formulations have the general composition of a chelating agent, preferably weakly to moderately acidic (0.1-10%; preferably 0.2-2.8%); a fluoride salt, which may be ammonium fluoride or an organic derivative of either ammonium fluoride or a polyammonium fluoride (1.65-7%; preferably 2.25-7%); a glycol solvent (71-98%; preferably 90-98%); and optionally, an amine.
    Type: Grant
    Filed: December 16, 1998
    Date of Patent: August 28, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventors: William A. Wojtczak, Long Nguyen, Stephen A. Fine
  • Patent number: 6280602
    Abstract: An apparatus and method for the indirect determination of concentrations of additives in metal plating electrolyte solutions, particularly organic additives in Cu-metalization baths for semiconductor manufacturing. The apparatus features a reference electrode housed in an electrically isolated chamber and continuously immersed in the base metal plating solution (without the additive to be measured). An additive concentration determination method comprises electroplating a test electrode at a constant or known current in a mixing chamber wherein the base metal plating solution is mixed with small volumes of the sample and various calibration solutions containing the additive to be measured. Plating potentials between the electrodes are measured and plotted for each of the solution mixtures, and data are extrapolated to determine the concentration of the additive in the sample.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: August 28, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventor: Peter M. Robertson
  • Patent number: 6279745
    Abstract: The present invention provides a system and method for a seal for a sterilizable bag. This seal is made between a first polymeric sheet material (5) and a second polymeric sheet material (3). The first sheet material (5) should be sufficiently porous so as to allow or permit gas or steam sterilization but substantially impervious to bacteria. The second sheet material (3) includes an outer heat sealable layer. The seal (4) is fabricated from a first thermal surface weld (15) between the heat sealable layer of the second sheet material (3) and the first sheet material (5), and a second thermal melt weld (12) between at least the heat sealable layer of the second sheet material (3) and the first sheet material (5). The thermal melt weld (12) may be narrower than the first weld (11) and lying within the boundaries of the first weld (11). Furthermore, seal (4) may be sufficiently flat in order to allow a cross-heat seal using conventional equipment.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: August 28, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Marc Huynen, Stéphane Huynen, Steven Vanhamel
  • Patent number: 6280507
    Abstract: An air manager for the containment of hazardous fumes over a liquid chemical tank in exhausted equipment and systems in a clean room. A powered, filtered airflow source forces filtered air through a plenum coextensive with a transverse dimension of the chemical tank, in a sheet-like airflow stream over the liquid surface. The airflow is captured at the opposite side of the liquid chemical tank and directed to a powered exhaust. The air manager works cooperatively with the clean room laminar airflow, dramatically increasing the efficiency of the local exhaust. Critical Capture Velocity over the entire surface of the tank is maintained, assuring complete containment of chemical fumes. Optional airflow guides positioned along the sides of the chemical tank may be employed to confine the air stream to the area over the liquid surface.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: August 28, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventor: Bruce Walker