Patents Represented by Attorney Robin W. Edwards
  • Patent number: 8347479
    Abstract: A first material with a known maximum temperature of operation is coated with a second material on at least one surface of the first material. The coating has a melting temperature that is greater than the maximum temperature of operation of the first material. The coating is heated to its melting temperature until the coating flows into any cracks in the first material's surface.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: January 8, 2013
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: Stephen W. Smith, John A. Newman, Robert S. Piascik, Edward H. Glaessgen
  • Patent number: 8344281
    Abstract: A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: January 1, 2013
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Karen M. Taminger, William H. Hofmeister, Robert A. Hafley
  • Patent number: 8259104
    Abstract: In a method for domain decomposition for generating unstructured grids, a surface mesh is generated for a spatial domain. A location of a partition plane dividing the domain into two sections is determined. Triangular faces on the surface mesh that intersect the partition plane are identified. A partition grid of tetrahedral cells, dividing the domain into two sub-domains, is generated using a marching process in which a front comprises only faces of new cells which intersect the partition plane. The partition grid is generated until no active faces remain on the front. Triangular faces on each side of the partition plane are collected into two separate subsets. Each subset of triangular faces is renumbered locally and a local/global mapping is created for each sub-domain. A volume grid is generated for each sub-domain. The partition grid and volume grids are then merged using the local-global mapping.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: September 4, 2012
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Shahyar Z. Pirzadeh, Soheila Banihashemi, legal representative
  • Patent number: 8179203
    Abstract: A wireless electrical device includes an electrically unconnected electrical conductor and at least one electrically unconnected electrode spaced apart from the electrical conductor. The electrical conductor is shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. Each electrode is at a location lying within the magnetic field response so-generated and is constructed such that a linear movement of electric charges is generated in each electrode due to the magnetic field response so-generated.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: May 15, 2012
    Assignee: The United States of America, as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Stanley E. Woodard, Bryant Douglas Taylor
  • Patent number: 8170234
    Abstract: Mapping coherent/incoherent acoustic sources as determined from a phased microphone array. A linear configuration of equations and unknowns are formed by accounting for a reciprocal influence of one or more cross-beamforming characteristics thereof at varying grid locations among the plurality of grid locations. An equation derived from the linear configuration of equations and unknowns can then be iteratively determined. The equation can be attained by the solution requirement of a constraint equivalent to the physical assumption that the coherent sources have only in phase coherence. The size of the problem may then be reduced using zoning methods.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: May 1, 2012
    Assignee: The United States of America by the Administrator of the National Aeronautics and Space Adminstration
    Inventors: Thomas F. Brooks, William M. Humphreys, Jr.
  • Patent number: 8167204
    Abstract: A wireless damage location sensing system uses a geometric-patterned wireless sensor that resonates in the presence of a time-varying magnetic field to generate a harmonic response that will experience a change when the sensor experiences a change in its geometric pattern. The sensing system also includes a magnetic field response recorder for wirelessly transmitting the time-varying magnetic field and for wirelessly detecting the harmonic response. The sensing system compares the actual harmonic response to a plurality of predetermined harmonic responses. Each predetermined harmonic response is associated with a severing of the sensor at a corresponding known location thereof so that a match between the actual harmonic response and one of the predetermined harmonic responses defines the known location of the severing that is associated therewith.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: May 1, 2012
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Stanley E. Woodard, Bryant Douglas Taylor
  • Patent number: 8060350
    Abstract: Computational aeroelastic analyses typically use a mathematical model for the structural modes of a flexible structure and a nonlinear aerodynamic model that can generate a plurality of unsteady aerodynamic responses based on the structural modes for conditions defining an aerodynamic condition of the flexible structure. In the present invention, a linear state-space model is generated using a single execution of the nonlinear aerodynamic model for all of the structural modes where a family of orthogonal functions is used as the inputs. Then, static and dynamic aeroelastic solutions are generated using computational interaction between the mathematical model and the linear state-space model for a plurality of periodic points in time.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: November 15, 2011
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Walter A. Silva
  • Patent number: 8042739
    Abstract: A wireless tamper detection sensor is defined by a perforated electrical conductor. The conductor is shaped to form a geometric pattern between first and second ends thereof such that the conductor defines an open-circuit that can store and transfer electrical and magnetic energy. The conductor resonates in the presence of a time-varying magnetic field to generate a harmonic response. The harmonic response changes when the conductor experiences a change in its geometric pattern due to severing of the conductor along at least a portion of the perforations. A magnetic field response recorder is used to wirelessly transmit the time-varying magnetic field and wirelessly detecting the conductor's harmonic response.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: October 25, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Stanley E. Woodard, Bryant D. Taylor
  • Patent number: 8015819
    Abstract: Disposed at or toward the trailing edge of one or more nozzles associated with a jet engine are injection ports which can selectively be made to discharge a water stream into a nozzle flow stream for the purpose of increasing turbulence in somewhat of a similar fashion as mechanically disposed chevrons have done in the known art. Unlike mechanically disposed chevrons of the known art, the fluid flow may be secured thereby increasing the engine efficiency. Various flow patterns, water pressures, orifice designs or other factors can be made operative to provide desired performance characteristics.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: September 13, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Russell H. Thomas, Kevin W. Kinzie
  • Patent number: 7991595
    Abstract: An exemplary embodiment providing one or more improvements includes software which is robust, efficient, and has a very fast run time for user directed grid enrichment and flow solution adaptive grid refinement. All user selectable options (e.g., the choice of functions, the choice of thresholds, etc.), other than a pre-marked cell list, can be entered on the command line. The ease of application is an asset for flow physics research and preliminary design CFD analysis where fast grid modification is often needed to deal with unanticipated development of flow details.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: August 2, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: S. Paul Pao, Khaled S. Abdol-Hamid
  • Patent number: 7972536
    Abstract: The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (Tg) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: July 5, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Jr., Joycelyn S. Harrison, Cheol Park, Kent A. Watson, Zoubeida Ounaies
  • Patent number: 7964698
    Abstract: The benefits of liquid crystal polymers and polyetherimides are combined in an all-aromatic thermoplastic liquid crystalline polyetherimide. Because of the unique molecular structure, all-aromatic thermotropic liquid crystal polymers exhibit outstanding processing properties, excellent barrier properties, low solubilities and low coefficients of thermal expansion in the processing direction. These characteristics are combined with the strength, thermal, and radiation stability of polyetherimides.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: June 21, 2011
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Erik S. Weiser, Theodorus J. Dingemans, Terry L. St. Clair, Jeffrey A. Hinkley
  • Patent number: 7902815
    Abstract: A wireless system for collecting data indicative of a tire's characteristics uses at least one open-circuit electrical conductor in a tire. The conductor is shaped such that it can store electrical and magnetic energy. In the presence of a time-varying magnetic field, the conductor resonates to generate a harmonic response having a frequency, amplitude and bandwidth. A magnetic field response recorder is used to (i) wirelessly transmit the time-varying magnetic field to the conductor, and (ii) wirelessly detect the harmonic response and the frequency, amplitude and bandwidth, associated therewith. The recorder is adapted to be positioned in a location that is fixed with respect to the tire as the tire rotates.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: March 8, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Stanley E. Woodard, Bryant D. Taylor
  • Patent number: 7871682
    Abstract: A composite laminate material is supported during the roll press processing thereof by an assembly having: first and second perforated films disposed adjacent to first and second opposing surfaces of a mixture of uncured resin and fibers defining the composite laminate material, a gas permeable encasement surrounding the mixture and the first and second films, a gas impervious envelope sealed about the gas permeable encasement, and first and second rigid plates clamped about the gas impervious envelope.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: January 18, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Luke A. Catella
  • Patent number: 7855368
    Abstract: Acoustic thermography uses a housing configured for thermal, acoustic and infrared radiation shielding. For in-situ applications, the housing has an open side adapted to be sealingly coupled to a surface region of a structure such that an enclosed chamber filled with air is defined. One or more acoustic sources are positioned to direct acoustic waves through the air in the enclosed chamber and towards the surface region. To activate and control each acoustic source, a pulsed signal is applied thereto. An infrared imager focused on the surface region detects a thermal image of the surface region. A data capture device records the thermal image in synchronicity with each pulse of the pulsed signal such that a time series of thermal images is generated. For enhanced sensitivity and/or repeatability, sound and/or vibrations at the surface region can be used in feedback control of the pulsed signal applied to the acoustic sources.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: December 21, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Joseph N. Zalameda, William P. Winfree, William T. Yost
  • Patent number: 7814786
    Abstract: A wireless sensing system monitors the level, temperature, magnetic permeability and electrical dielectric constant of a non-gaseous material in a container. An open-circuit electrical conductor is shaped to form a two-dimensional geometric pattern that can store and transfer electrical and magnetic energy. The conductor resonates in the presence of a time-varying magnetic field to generate a harmonic response. The conductor is mounted in an environmentally-sealed housing. A magnetic field response recorder wirelessly transmits the time-varying magnetic field to power the conductor, and wirelessly detects the harmonic response that is an indication of at least one of level of the material in the container, temperature of the material in the container, magnetic permeability of the material in the container, and dielectric constant of the material in the container.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: October 19, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Stanley E. Woodard
  • Patent number: 7792015
    Abstract: A rapid Byzantine self-stabilizing clock synchronization protocol that self-stabilizes from any state, tolerates bursts of transient failures, and deterministically converges within a linear convergence time with respect to the self-stabilization period. Upon self-stabilization, all good clocks proceed synchronously. The Byzantine self-stabilizing clock synchronization protocol does not rely on any assumptions about the initial state of the clocks. Furthermore, there is neither a central clock nor an externally generated pulse system. The protocol converges deterministically, is scalable, and self-stabilizes in a short amount of time. The convergence time is linear with respect to the self-stabilization period.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: September 7, 2010
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Mahyar R. Malekpour
  • Patent number: 7769135
    Abstract: A new X-ray diffraction (XRD) method is provided to acquire XY mapping of the distribution of single crystals, poly-crystals, and twin defects across an entire wafer of rhombohedral super-hetero-epitaxial semiconductor material. In one embodiment, the method is performed with a point or line X-ray source with an X-ray incidence angle approximating a normal angle close to 90°, and in which the beam mask is preferably replaced with a crossed slit. While the wafer moves in the X and Y direction, a narrowly defined X-ray source illuminates the sample and the diffracted X-ray beam is monitored by the detector at a predefined angle. Preferably, the untilted, asymmetric scans are of {440} peaks, for twin defect characterization.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: August 3, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Yeonjoon Park, Sang Hyouk Choi, Glen C. King, James R. Elliott, Albert L. Dimarcantonio
  • Patent number: 7759932
    Abstract: A magnetic field response sensor comprises an inductor placed at a fixed separation distance from a conductive surface to address the low RF transmissivity of conductive surfaces. The minimum distance for separation is determined by the sensor response. The inductor should be separated from the conductive surface so that the response amplitude exceeds noise level by a recommended 10 dB. An embodiment for closed cavity measurements comprises a capacitor internal to said cavity and an inductor mounted external to the cavity and at a fixed distance from the cavity's wall. An additional embodiment includes a closed cavity configuration wherein multiple sensors and corresponding antenna are positioned inside the cavity, with the antenna and inductors maintained at a fixed distance from the cavity's wall.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: July 20, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Stanley E. Woodard, Bryant Douglas Taylor
  • Patent number: 7760778
    Abstract: A system and method are provided for cooling a crystal rod of a side-pumped laser. A transparent housing receives the crystal rod therethrough so that an annular gap is defined between the housing and the radial surface of the crystal rod. A fluid coolant is injected into the annular gap such the annular gap is partially filled with the fluid coolant while the radial surface of the crystal rod is wetted as a thin film all along the axial length thereof.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: July 20, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Brian K. Stewart