Patents Represented by Attorney Roger A. Williams
  • Patent number: 7482097
    Abstract: This invention relates to electrode active materials, electrodes, and batteries. In particular, this invention relates to active materials comprising lithium or other alkali metals, transition metals, +3 oxidation state non-transition elements, and phosphates or similar moieties.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: January 27, 2009
    Assignee: Valence Technology, Inc.
    Inventors: Mohammed Y. Saidi, Haitao Huang
  • Patent number: 7438992
    Abstract: The invention provides novel lithium-mixed metal materials which, upon electrochemical interaction, release lithium ions, and are capable of reversibly cycling lithium ions. The invention provides a rechargeable lithium battery which comprises an electrode formed from the novel lithium-mixed metal materials. Methods for making the novel lithium-mixed metal materials and methods for using such lithium-mixed metal materials in electrochemical cells are also provided. The lithium-mixed metal materials comprise lithium and at least one other metal besides lithium. Preferred materials are lithium-mixed metal phosphates which contain lithium and two other metals besides lithium.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: October 21, 2008
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi
  • Patent number: 6815122
    Abstract: Electrode active materials comprising lithium or other alkali metals, a transition metal, and a phosphate or similar moiety, of the formula: Aa+xMbP1−xSixO4 wherein (a) A is selected from the group consisting of Li, Na, K, and mixtures thereof, and 0<a<1.0 and 0≦x≦1; (b) M comprises one or more metals, comprising at least one metal which is capable of undergoing oxidation to a higher valence state, where 0<b≦2; and wherein M, a, b, and x are selected so as to maintain electroneutrality of the compound. In a preferred embodiment, M comprises at least one transition metal selected from Groups 4 to 11 of the Periodic Table. In another preferred embodiment, M comprises M′cM″d, where M′ is at least one transition metal from Groups 4 to 11 of the Periodic Table; and M″ is at least one element from Groups 2, 3, 12, 13, or 14 of the Periodic Table, and c+d=b. Preferably, 0.1≦a≦0.8.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: November 9, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer
  • Patent number: 6809500
    Abstract: Power supply apparatuses and power supply operational methods are provided. According to one aspect, a power supply apparatus includes a power node, an electrochemical device configured to store electrical energy, a switch including a control node and the switch is adapted to electrically couple the electrochemical device with the power node in a conducting state and to substantially electrically isolate the electrochemical device and the power node in a nonconducting state, a controller configured to output a first control signal to control the operation of the switch between the conducting state and the nonconducting state and circuitry coupled with the controller and the control node and configured to receive electrical energy at a first voltage magnitude, to increase the electrical energy to a second voltage magnitude greater than the first voltage magnitude to provide a second control signal, and to output the control signal of the second voltage magnitude to the switch.
    Type: Grant
    Filed: January 28, 2003
    Date of Patent: October 26, 2004
    Assignee: Valence Technology, Inc.
    Inventor: John Cummings
  • Patent number: 6798170
    Abstract: Electrical power source apparatuses, circuits, electrochemical device charging methods, and methods of charging a plurality of electrochemical devices are provided. According to one aspect, an electrical power source apparatus includes a plurality of charging nodes, a plurality of electrochemical devices individually coupled with a respective one of the charging nodes and individually configured to assume an open-circuit condition in a substantially charged state and a plurality of shunting devices coupled with respective ones of the charging nodes and individually configured to shunt electrical energy from a respective one of the charging nodes after the respective electrochemical device assumes the open-circuit condition.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: September 28, 2004
    Assignee: Valence Technology, Inc.
    Inventor: John Cummings
  • Patent number: 6794084
    Abstract: The present invention relates general to a method for making an alkali metal hydrogen phosphate of the general formula AxH3−xPO4, wherein A is an alkali metal and 0≦x≦3, prepared by admixing an alkali metal-containing compound, a phosphate-supplying compound, and water, where water is present in the mixture at a level of from about 5% to 25% by weight.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: September 21, 2004
    Assignee: Valence Technology, Inc.
    Inventors: George W. Adamson, Jeremy Barker, Titus Faulkner, M. Yazid Saidi, Jeffrey Swoyer
  • Patent number: 6777132
    Abstract: The present invention relates to novel electrode active materials represented by the general formula AaMb(XY4)cZd, wherein: (a) A is one or more alkali metals, and 0<a≦8; (b) M is at least one metal capable of undergoing oxidation to a higher valence state, and 1≦b≦3; (c) XY4 is selected from the group consisting of X′O4−xY′x, X′O4−yY′2y, X″S4, and a mixture thereof, where X′ is P, As, Sb, Si, Ge, S, and mixtures thereof; X″ is P, As, Sb, Si, Ge, and mixtures thereof, Y′ is halogen, 0≦x<3, 0<y<4, and 0<c≦3; and (d) Z is OH, a halogen, or mixtures thereof, and 0<d≦6.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: August 17, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer
  • Patent number: 6730281
    Abstract: A method for carrying out solid state reactions under reducing conditions is provided. Solid state reactants include at least one inorganic metal compound and a source of reducing carbon. The reaction may be carried out in a reducing atmosphere in the presence of reducing carbon. Reducing carbon may be supplied by elemental carbon, by an organic material, or by mixtures. The organic material is one that can form decomposition products containing carbon in a form capable of acting as a reductant. The reaction proceeds without significant covalent incorporation of organic material into the reaction product. In a preferred embodiment, the solid state reactants also include an alkali metal compound. The products of the method find use in lithium ion batteries as cathode active materials. Preferred active materials include lithium-transition metal phosphates and lithium-transition metal oxides.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: May 4, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer, Ming Dong
  • Patent number: 6723470
    Abstract: The invention provides novel lithium-mixed metal materials which, upon electrochemical interaction, release lithium ions, and are capable of reversibly cycling lithium ions. The invention provides a rechargeable lithium battery which comprises an electrode formed from the novel lithium-mixed metal materials. Methods for making the novel lithium-mixed metal materials and methods for using such lithium-mixed metal materials in electrochemical cells are also provided. The lithium-mixed metal materials comprise lithium and at least one other metal besides lithium. Preferred materials are lithium-mixed metal phosphates which contain lithium and two other metals besides lithium.
    Type: Grant
    Filed: July 18, 2001
    Date of Patent: April 20, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer
  • Patent number: 6720112
    Abstract: An electrochemical active material contains a lithiated zirconium, titanium, or mixed titanium/zirconium oxide. The oxide can be represented by the formula LiM′M″XO4, where M′ is a transition metal, M″ is an optional three valent non-transition metal, and X is zirconium, titanium, or a combination of the two. Preferably, M′ is nickel, cobalt, iron, manganese, vanadium, copper, chromium, molybdenum, niobium, or combinations thereof. The active material provides a useful composite electrode when combined with a polymeric binder and electrically conductive material. The active material can be made into a cathode for use in a secondary electrochemical cell. Rechargeable batteries may be made by connecting a number of such electrochemical cells.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: April 13, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer
  • Patent number: 6720110
    Abstract: The invention provides an electrochemical cell which comprises a first electrode and a second electrode which is a counter electrode to said first electrode. The first electrode comprises a phosphorous compound of the nominal general formula Li3E′aE″b(PO4)3, desirably at least one E is a metal; and preferably, Li3M′M″(PO4)3. E′ and E″ are the same or different from one another. Where E′ and E″ are the same, they are preferably metals having more than one oxidation state. Where E′ and E″ are different from one another, they are preferably selected from the group of metals where at least one of E′ and E″ has more than one oxidation state.
    Type: Grant
    Filed: February 5, 2001
    Date of Patent: April 13, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi
  • Patent number: 6716372
    Abstract: The invention provides novel lithium-mixed metal materials which, upon electrochemical interaction, release lithium ions, and are capable of reversibly cycling lithium ions. The invention provides a rechargeable lithium battery which comprises an electrode formed from the novel lithium-mixed metal materials. Methods for making the novel lithium-mixed metal materials and methods for using such lithium-mixed metal materials in electrochemical cells are also provided. The lithium-mixed metal materials comprise lithium and at least one other metal besides lithium. Preferred materials are lithium-mixed metal phosphates which contain lithium and two other metals besides lithium.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: April 6, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey Swoyer
  • Patent number: 6706445
    Abstract: An electrochemical active material contains a lithiated zirconium, titanium, or mixed titanium/zirconium oxide. The oxide can be represented by the formula LiM′M″XO4, where M′ is a transition metal, M″ is an optional three valent non-transition metal, and X is zirconium, titanium, or a combination of the two. Preferably, M′ is nickel, cobalt, iron, manganese, vanadium, copper, chromium, molybdenum, niobium, or combinations thereof. The active material provides a useful composite electrode when combined with a polymeric binder and electrically conductive material. The active material can be made into a cathode for use in a secondary electrochemical cell. Rechargeable batteries may be made by connecting a number of such electrochemical cells.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: March 16, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer
  • Patent number: 6702961
    Abstract: The invention provides novel lithium-mixed metal materials which, upon electrochemical interaction, release lithium ions, and are capable of reversibly cycling lithium ions. The invention provides a rechargeable lithium battery which comprises an electrode formed from the novel lithium-mixed metal materials. Methods for making the novel lithium-mixed metal materials and methods for using such lithium-mixed metal materials in electrochemical cells are also provided. The lithium-mixed metal materials comprise lithium and at least one other metal besides lithium. Preferred materials are lithium-mixed metal phosphates which contain lithium and two other metals besides lithium.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: March 9, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey Swoyer
  • Patent number: 6645452
    Abstract: The invention provides a method for making lithium mixed metal materials in electrochemical cells. The lithium mixed metal materials comprise lithium and at least one other metal besides lithium. The invention involves the reaction of a metal compound, and a phosphate compound, with a reducing agent to reduce the metal and form a metal phosphate. The invention also includes methods of making lithium metal oxides involving reaction of a lithium compound, and a metal oxide with a reducing agent.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: November 11, 2003
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey Swoyer
  • Patent number: 6596435
    Abstract: The invention provides an electrochemically active material comprising particles of spinel lithium manganese oxide having on the surface of each particle cationic metal species bound to the spinel at anionic sites of the particle surface; where the cationic metal species includes a metal selected from the group consisting of transition metals, non-transition metals having a +3 valence state, and mixtures thereof. The active material is characterized by a reduced surface area and increased capacity expressed in milliamp hour per gram as compared to the spinel alone.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: July 22, 2003
    Assignee: Valence Technology, Inc.
    Inventors: Tracy E. Kelley, Porter H. Mitchell, Chariclea A. Scordilis-Kelley
  • Patent number: 6579643
    Abstract: A separator for use in laminated multi-layer electrochemical cell device structures. The devices comprise positive and negative electrode layer members of polymeric matrix composition having the microporous polyolefin membrane separator member interposed therebetween wherein the separator membrane includes a polymer coating layer. The separator is treated to provide a deposited coating of a primary plasticizer for the polymer coating layer. The device electrode and separator members are then assembled and laminated at a compressive force and temperature at which the plasticizer film softens the polymer coating of the separator member sufficiently to establish a strong interfacial bond with the matrix polymers of the electrode members and thereby form a laminated unitary cell structure. In another embodiment, the primary plasticizer comprises a component of the electrode polymeric matrix compositions.
    Type: Grant
    Filed: November 23, 1999
    Date of Patent: June 17, 2003
    Assignee: Valence Technology, Inc.
    Inventor: Antoni S. Gozdz
  • Patent number: 6555026
    Abstract: A composition and a method for forming the composition stabilized against capacity degradation comprises particles of spinel lithium manganese oxide (LMO) enriched with lithium by a decomposition product of lithium carbonate forming a part of each said particle and characterized by a reduced surface area and increased capacity expressed in milliamp hours per gram as compared to non-enriched spinel.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: April 29, 2003
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Chariclea A. Scordilis-Kelley
  • Patent number: 6541155
    Abstract: In one implementation, a bicell battery apparatus includes first and second counter electrodes and an intermediate electrode positioned therebetween. Respective end edges of the first and second counter electrodes are received outwardly beyond a respective end edge of the intermediate electrode at a region. A current collector extension extends from one of the end edges of the intermediate electrode within the region and extends outwardly beyond the respective end edges of the first and second counter electrodes within the region. A first substantially electrolyte impermeable insulative layer is received between the current collector extension and the first counter electrode. A second substantially electrolyte impermeable insulative layer is received between the current collector extension and the second counter electrode.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: April 1, 2003
    Assignee: Valence Technology, Inc.
    Inventors: Wade W. Guindy, David Irwin
  • Patent number: 6537703
    Abstract: A mesoporous polymeric membrane for use as an ionically-conductive inter-electrode separator in a rechargeable battery cell contains a like distribution of mesopore voids throughout a membrane matrix. The porous membrane is capable of absorbing significant amounts of electrolyte solution to provide suitable ionic conductivity for use in rechargeable battery cells. The addition of inert particulate filler to the coating composition provides further strength in the body of the membrane and provides particulate support within the membrane mesopores which prevents collapse of the voids at cell fabrication laminating temperatures and thus maintains electrolyte absorption capability.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: March 25, 2003
    Assignee: Valence Technology, Inc.
    Inventors: Aurelien DuPasquier, Jean-Marie Tarascon