Patents Represented by Attorney, Agent or Law Firm Stephen R. May
  • Patent number: 6936237
    Abstract: The present invention provides catalysts, reactors, and methods of steam reforming alcohols over a catalyst. Surprisingly superior results and properties obtained in methods and catalysts of the present invention are also described.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: August 30, 2005
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, Anna Lee Y. Tonkovich, Jianli Hu
  • Patent number: 6734137
    Abstract: The present invention includes an improvement to the existing method of steam reforming of hydrocarbon, wherein the improvement comprises: the flowing is at a rate providing a residence time less than about 0.1 sec resulting in obtaining product formation yield or amount that is the same or greater compared to product formation at a longer residence time. Another improvement of the present invention is operation at a steam to carbon ratio that is substantially stoichiometric and maintaining activity of the supported catalyst. The present invention also includes a catalyst structure for steam reforming of a hydrocarbon.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: May 11, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich
  • Patent number: 6729185
    Abstract: An improved photoacoustic vessel and method of photoacoustic analysis. The photoacoustic sample vessel comprises an acoustic detector, an acoustic couplant, and an acoustic coupler having a chamber for holding the acoustic couplant and a sample. The acoustic couplant is selected from the group consisting of liquid, solid, and combinations thereof. Passing electromagnetic energy through the sample generates an acoustic signal within the sample, whereby the acoustic signal propagates through the sample to and through the acoustic couplant to the acoustic detector.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: May 4, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Tom Autrey, Clement R. Yonker
  • Patent number: 6723426
    Abstract: The composite material and methods of making the present invention rely upon a fully dense monolayer of molecules attached to an oxygenated surface at one end, and an organic terminal group at the other end, which is in turn bonded to a polymer. Thus, the composite material is a second material chemically bonded to a polymer with fully dense monolayer there between.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: April 20, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Glen E. Fryxell, William D. Samuels, Kevin L. Simmons
  • Patent number: 6713774
    Abstract: A structure and method for changing or controlling the thermal emissivity of the surface of an object in situ, and thus, changing or controlling the radiative heat transfer between the object and its environment in situ, is disclosed. Changing or controlling the degree of blackbody behavior of the object is accomplished by changing or controlling certain physical characteristics of a cavity structure on the surface of the object. The cavity structure, defining a plurality of cavities, may be formed by selectively removing material(s) from the surface, selectively adding a material(s) to the surface, or adding an engineered article(s) to the surface to form a new radiative surface. The physical characteristics of the cavity structure that are changed or controlled include cavity area aspect ratio, cavity longitudinal axis orientation, and combinations thereof.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: March 30, 2004
    Assignee: Battelle Memorial Institute
    Inventors: John G. DeSteese, Zenen I. Antoniak, Michael White, Timothy J. Peters
  • Patent number: 6699384
    Abstract: Microanalytical systems based on a microfluidics/electrochemical detection scheme are described. Individual modules, such as microfabricated piezoelectrically actuated pumps and a microelectrochemical cell were integrated onto portable platforms. This allowed rapid change-out and repair of individual components by incorporating “plug and play” concepts now standard in PC's. Different integration schemes were used for construction of the microanalytical systems based on microfluidics/electrochemical detection. In one scheme, all individual modules were integrated in the surface of the standard microfluidic platform based on a plug-and-play design. Microelectrochemical flow cell which integrated three electrodes based on a wall-jet design was fabricated on polymer substrate. The microelectrochemical flow cell was then plugged directly into the microfluidic platform.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: March 2, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Yuehe Lin, Wendy D. Bennett, Charles Timchalk, Karla D. Thrall
  • Patent number: 6680044
    Abstract: The present invention provides chemical reactors and reaction chambers and methods for conducting catalytic chemical reactions having gas phase reactants. In preferred embodiments, these reaction chambers and methods include at least one porous catalyst material that has pore sizes large enough to permit molecular diffusion within the porous catalyst material.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: January 20, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Yong Wang, Sean P. Fitzgerald, Jennifer L. Marco, Gary L. Roberts, David P. VanderWiel, Robert S. Wegeng
  • Patent number: 6660237
    Abstract: The present invention includes a catalyst structure and method of making the catalyst structure for Fischer-Tropsch synthesis that both rely upon the catalyst structure having a first porous structure with a first pore surface area and a first pore size of at least about 0.1 &mgr;m, preferably from about 10 &mgr;m to about 300 &mgr;m. A porous interfacial layer with a second pore surface area and a second pore size less than the first pore size is placed upon the first pore surface area. Finally, a Fischer-Tropsch catalyst selected from the group consisting of cobalt, ruthenium, iron and combinations thereof is placed upon the second pore surface area. Further improvement is achieved by using a microchannel reactor wherein the reaction chamber walls define a microchannel with the catalyst structure placed therein through which pass reactants. The walls may separate the reaction chamber from at least one cooling chamber. The present invention also includes a method of Fischer-Tropsch synthesis.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: December 9, 2003
    Assignee: Battelle Memory Institute
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich, Yufei Gao, Eddie G. Baker
  • Patent number: 6652830
    Abstract: The reaction of carbon monoxide with steam over an alkali-modified ruthenium-on-zirconia catalyst has been found to yield surprisingly high yields of hydrogen gas at relatively low temperatures. Catalyst structures, reactors, hydrogen production systems, and methods for producing hydrogen utilizing the alkali-modified ruthenium-on-zirconia catalyst are described. Methods of making catalysts are also described.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: November 25, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, Anna Lee Y. Tonkovich
  • Patent number: 6645377
    Abstract: The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: November 11, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Oleg B. Egorov, Matthew J. O'Hara, Jay W. Grate, Darrell P. Chandler, Fred J. Brockman, Cynthia J. Bruckner-Lea
  • Patent number: 6630012
    Abstract: The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: October 7, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Robert S. Wegeng, Scot D. Rassat, Victoria S. Stenkamp, Ward E. TeGrotenhuis, Dean W. Matson, M. Kevin Drost, Vilayanur V. Viswanathan
  • Patent number: 6616909
    Abstract: Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: September 9, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Yong Wang, Robert S. Wegeng, Yufei Gao
  • Patent number: 6608302
    Abstract: A method for improving the calibration of a Fourier transform ion cyclotron resonance mass spectrometer wherein the frequency spectrum of a sample has been measured and the frequency (f) and intensity (I) of at least three species having known mass to charge (m/z) ratios and one specie having an unknown (m/z) ratio have been identified.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: August 19, 2003
    Inventors: Richard D. Smith, Christophe D. Masselon, Aleksey Tolmachev
  • Patent number: 6607678
    Abstract: The present invention provides a method of steam reforming a hydrocarbon over a spinel-containing catalyst at short residence times or short contact times. The present invention also provides spinel-containing catalysts. Surprisingly superior results and properties obtained in methods and catalysts of the present invention are also described.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: August 19, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, Anna Lee Y. Tonkovich, David P. Vanderwiel
  • Patent number: 6583408
    Abstract: A jet disturber used in combination with an ion funnel to focus ions and other charged particles generated at or near atmospheric pressure into a relatively low pressure region, which allows increased conductance of the ions and other charged particles. The jet disturber is positioned within an ion funnel and may be interfaced with a multi-capillary inlet juxtaposed between an ion source and the interior of an instrument maintained at near atmospheric pressure. The invention finds particular advantages when deployed to improve the ion transmission between an electrospray ionization source and the first vacuum stage of a mass spectrometer.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: June 24, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Richard D. Smith, Taeman Kim, Keqi Tang, Harold R. Udseth
  • Patent number: 6565737
    Abstract: A method and apparatus for selectively removing oxygen from a gas stream containing NOx and oxygen by contacting the gas stream with an electrochemical cell made from an electrode consisting of La1-XMXFeO3, (where M is selected from the group consisting of Sr, Ba, Ca, and combinations thereof, and X is between 0.05 and 0.5), a solid oxide electrolyte and a counter electrode, wherein the La1-XMXFeO3 electrode is on one side of a solid oxide electrolyte, and a counter electrode is on the opposite side of the solid oxide electrolyte, and applying a voltage to the electrochemical cell. The apparatus is preferably employed in a two chambered NOx sensor utilizing solid electrolyte electrochemical cells, wherein an electrochemical cell capable of catalyzing oxygen reduction without catalyzing NOx decomposition is formed as integral to the first chamber.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: May 20, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Olga A. Marina, Craig F. Habeger
  • Patent number: 6551231
    Abstract: The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: April 22, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Mary Bliss, Richard A. Craig, Paul L. Reeder
  • Patent number: 6533840
    Abstract: The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: March 18, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Peter M. Martin, Wendy D. Bennett, Dean W. Matson, Donald C. Stewart, Monte K. Drost, Robert S. Wegeng, Joseph M. Perez, Xiangdong Feng, Jun Liu
  • Patent number: 6534782
    Abstract: A method for producing quantum dots. The method includes cleaning an oxide substrate and separately cleaning a metal source. The substrate is then heated and exposed to the source in an oxygen environment. This causes metal oxide quantum dots to form on the surface of the substrate.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: March 18, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Yong Liang, John L. Daschbach, Yali Su, Scott A. Chambers
  • Patent number: 6532769
    Abstract: The present invention is a glass-ceramic material and method of making useful for joining a solid ceramic component and at least one other solid component. The material is a blend of M1-M2-M3, wherein M1 is BaO, SrO, CaO, MgO, or combinations thereof, M2 is Al2O3, present in the blend in an amount from 2 to 15 mol %, M3 is SiO2 with up to 50 mol % B2O3 that substantially matches a coefficient of thermal expansion of the solid electrolyte. According to the present invention, a series of glass ceramics in the M1-Al2O3-M3 system can be used to join or seal both tubular and planar solid oxide fuel cells, oxygen electrolyzers, and membrane reactors for the production of syngas, commodity chemicals and other products.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: March 18, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Kerry D. Meinhardt, John D. Vienna, Timothy R. Armstrong, Larry R. Pederson