Abstract: A power tool has a mechanism for ejecting a battery pack which includes a receiving frame which defines a cavity to receive a battery pack. A receiving member is adjacent the cavity. The receiving member meshes with a member on the battery pack to hold the battery pack in the cavity. A biasing member is in the cavity adjacent the receiving member. The biasing member ejects the battery pack from the ejecting mechanism. A member retains the biasing member in the cavity. The member guides a portion of the battery pack meshing with the receiving member into contact with the biasing member such that when the battery pack is locked onto the frame, the biasing member is in a compressed condition and when the battery pack is an unlocked position, the biasing member ejects the battery pack from the frame.
Abstract: A power tool includes an output shaft configured to rotate about a longitudinal axis, a motor drivably connected to the output shaft to impart rotary motions thereto, and a rotational motion sensor spatially separated from the output shaft and operable to determine the user-imparted rotational motion of the power tool with respect to the longitudinal axis. A controller is electrically connected to the rotational motion sensor and the motor. The controller determines angular velocity of the power tool about the axis, rotational displacement of the power tool about the axis, and/or a direction of the rotational displacement using input from the rotational motion sensor. The controller then controls the motor according to the angular velocity, the rotational displacement, and/or the direction of the rotational displacement.
Type:
Grant
Filed:
January 7, 2011
Date of Patent:
October 16, 2012
Assignee:
Black & Decker Inc.
Inventors:
Daniel Puzio, Craig Schell, Daniele Brotto, Andrew Seman, Jr., Scott Eshleman, Joseph Kelleher, Sankarshan Murthy, Gabriel Concari, Thomas Bodine, Michael Haupt, Curtis Watenpaugh
Abstract: A power tool (10) is described which has several modes of operation, such as drilling and screw driving modes. A clutch is provided with various settings for adjusting the torque at which the clutch interrupts power to a spindle (18). Furthermore, a two speed gearbox (16) is provided for adjusting the speed of the spindle. All of these variables are controllable from a single adjustment member or collar (26) thereby reducing necessary decisions needed to be made by an operator for a particular job in hand. For instance, when an operator wants the tool to operate in a screw driving mode, the gearbox is automatically set to drive the spindle at a low speed with the clutch being operable to interrupt drive when a torque force applied to the spindle exceeds a threshold value. Furthermore, if the tool is required to operate in a drilling mode, the gearbox is automatically switched to drive the spindle at a higher speed and the clutch is automatically rendered inoperable.
Abstract: The present invention is drawn to a non-contact thermometer that is operable to emit a first light having a first color to create a spot of a first color at a reference target and to detect the temperature of the reference target. The non-contact thermometer is additionally operable to establish a temperature difference threshold. In use, once a temperature difference threshold is selected and once the temperature of the reference target is detected, the non-contact thermometer may detect a temperature of another target. Further, if the detected temperature of the other target is outside of the temperature difference threshold as compared to the temperature of the reference target, the non-contact thermometer is operable to emit a second light having a second color to create a spot of a second color at the other target.