Patents Represented by Attorney T. J. Hadlock
  • Patent number: 6099820
    Abstract: The invention includes a method for preparing a crystalline zeolite having the X-ray diffraction lines of Table 1. The method includes preparing a template-free reaction mixture including at least one active source of a first oxide selected from the group consisting of an oxide of silicon, germanium or both, optionally at least one active source of a second oxide selected from the group consisting of an oxide of aluminum, boron, gallium, iron or a mixture thereof; and heating the reaction mixture at crystallization conditions for sufficient time to form a crystallized material containing zeolite crystals having the X-ray diffraction lines of Table 1, where said zeolite crystals have a first oxide/second oxide molar ratio greater than 12.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: August 8, 2000
    Assignee: Chevron U.S.A. Inc.
    Inventor: Stephen J. Miller
  • Patent number: 5681749
    Abstract: A method is disclosed for determining the acid concentration in acid-water-hydrocarbon (acid-soluble oil) solutions using near-infrared spectrophotometry. The use of a multivariate analysis such as Partial Least Squares algorithm enables one to predict simultaneously the concentrations of water and acid-soluble oil in the process acids from the near-infrared spectra. Although the preferred embodiment is directed to sulfuric and hydrofluoric acids used for alkylation, the method is also applicable to processes using other organic or inorganic acids containing hydrogen bound to either carbon, oxygen or nitrogen. Advantages are elimination of acid waste, hazardous acid handling, and better alkylate product quality.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 28, 1997
    Assignee: Chevron U.S.A. Inc.
    Inventor: Periaswamy Ramamoorthy
  • Patent number: 5593570
    Abstract: A physically intermixed catalyst system comprising two distinctly different catalytic particles, the first of which is a hydrodenitrification and/or hydrodesulfurization catalyst and the second of which is a relatively active hydrocracking catalyst, wherein the catalyst particles of both catalytic components are substantially the same size, that is the effective diameter of each catalyst component is substantially the same. The catalyst system of the present invention can be layered with unmixed catalysts. The novel systems of the present invention have been found to provide surprisingly good selectivity for liquid products and stability against catalyst fouling when used in combined hydrotreating and hydrocracking applications, and can therefore be used to provide a stable catalyst system which offers even heat distribution and reactor control in such applications.
    Type: Grant
    Filed: May 9, 1995
    Date of Patent: January 14, 1997
    Assignee: Chevron Research and Technology Company, A Division of Chevron U.S.A. Inc.
    Inventors: Mohammad M. Habib, Philip L. Winslow, Richard O. Moore, Jr.
  • Patent number: 5593573
    Abstract: Sulfuric acids or salts thereof are used to remove metals, particularly organically-bound calcium, from hydrocarbonaceous feedstocks. An aqueous solution of the acid or its salts is used to extract the metals from the feedstock prior to processing.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: January 14, 1997
    Assignee: Chevron Research Company
    Inventor: David C. Kramer
  • Patent number: 5556900
    Abstract: Disclosed is a thermoplastic polymer-linked-asphalt and a process for making a thermoplastic polymer-linked-asphalt. More particularly, disclosed is a reaction process for linking epoxide-containing polymers to asphalt. The improved thermoplastic polymer-linked-asphalt product is particularly useful in road paving and roofing applications.
    Type: Grant
    Filed: November 10, 1994
    Date of Patent: September 17, 1996
    Assignees: Chevron Research and Technology Company, E. I. Du Pont de Nemours & Co.
    Inventors: J. L. Goodrich, R. J. Statz