Patents Represented by Attorney Thomas K. McBride
  • Patent number: 5856264
    Abstract: Novel, hollow, low-density agglomerates for use in sealed insulating glass windows to adsorb water vapor, and optionally organic materials, present in the cavity between the two glazings. These agglomerates provide sufficient but not excessive amounts of zeolitic and other adsorbents when used to fill all portions of the spacer tube located at the peripheral sides of the double glazed unit, thereby greatly facilitating the filling of such spacer tubes and the fabrication of the overall unit.
    Type: Grant
    Filed: February 26, 1996
    Date of Patent: January 5, 1999
    Assignee: UOP
    Inventors: Alan P. Cohen, Thomas J. Dangieri, Philip Connolly
  • Patent number: 5856604
    Abstract: A process for the production motor fuel components from isoparaffins by dehydrogenation, oligomerization and saturation uses a single compressor to provide all feed and recycle requirements within the process arrangement. The single compressor can be employed for the integration of all three processes while surprisingly reducing equipment requirements throughout the integrated process arrangement. The compressor raises the effluent pressure of the effluent from the dehydrogenation zone to a level that eliminates the need for any additional compression for the recycle of hydrogen to the saturation zone, eliminates the need for refrigeration to recover butanes from the dehydrogenation zone effluent and allow an essentially complete elimination of heavies from the feed to the oligomerization reaction zone.
    Type: Grant
    Filed: September 23, 1997
    Date of Patent: January 5, 1999
    Assignee: UOP LLC
    Inventors: Laurence O. Stine, Steven C. Gimre
  • Patent number: 5856606
    Abstract: Paraffins or other hydrocarbons are alkylated in a process featuring a reaction zone containing a pool of liquid maintained at its boiling point and containing a suspended solid catalyst, which allows the heat of reaction to vaporize a portion of the liquid phase feed hydrocarbon. The vapor phase withdrawn from the top of the reaction zone is at least partially recycled to the reaction zone either as vapor or liquid. The feed hydrocarbons are introduced to the bottom of the reaction zone as a vapor phase stream, which may contain hydrogen. The catalyst is suspended within the liquid in the reaction zone.
    Type: Grant
    Filed: September 27, 1996
    Date of Patent: January 5, 1999
    Assignee: UOP LLC
    Inventor: Anil R. Oroskar
  • Patent number: 5851267
    Abstract: A separation module uses a series of separation elements with interconnecting hardware that greatly reduces the time necessary for assembly of interconnected elements and the machining or preparation of an extended part of the module inside diameter for acceptance of the elements. The elements use an interconnection between the modules that provides a sliding seal for first engaging adjacent modules and allowing alignment while a secondary seal is brought into contact and locked to provide a rigid axial attachment between the separation elements. The module arrangement further uses a single outer seal near the end of the module into which the separation elements are inserted to reduce the amount of machining, honing, or sleeving necessary to seal the module against by-passing of feed or impermeable components.
    Type: Grant
    Filed: January 28, 1997
    Date of Patent: December 22, 1998
    Assignee: UOP LLC
    Inventor: A. William Schwartz
  • Patent number: 5851949
    Abstract: Applicants have developed a catalyst for various hydrocarbon conversion processes which is tolerant to the presence of large amounts of sulfur (1000 ppm) in the feedstream. The catalyst consists of a molecular sieve support such as MeAPSO or zeolite Y that has dispersed thereon palladium and a modifier such as lanthanum.
    Type: Grant
    Filed: September 2, 1997
    Date of Patent: December 22, 1998
    Assignee: UOP LLC
    Inventors: Leonid B. Galperin, Robert L. Bedard
  • Patent number: 5851383
    Abstract: A light hydrocarbon stream, such as a C.sub.3 -C.sub.5 stream recovered from an FCC unit, is catalytically treated for the selective hydrogenation of dienes and for the removal of mercaptans by thioetherification. The effluent of the reaction zone is fractionated to remove light ends and thioethers in a dual section fractionation zone, with the interconnection of the sections facilitating a reduction in capital and operating costs.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: December 22, 1998
    Assignee: UOP LLC
    Inventor: Stanley J. Frey
  • Patent number: 5851944
    Abstract: A process for regenerating solid treating particles contained in at least two vessels of a swing bed regeneration operation where the effluent of the regeneration operation is maintained regeneration fluid-free and at a substantially constant flowrate has been developed. The swing bed regeneration operation involves at least two vessels, one of which is on-line treating process fluid, and the other is off-line for regeneration. At least a portion of the process fluid effluent from the vessel on-line is conducted to a displacement surge drum. The flowrate of the process fluid effluent from the displacement surge drum is controlled so that downstream units receive a substantially constant flowrate.
    Type: Grant
    Filed: November 1, 1996
    Date of Patent: December 22, 1998
    Assignee: UOP LLC
    Inventors: Charles P. Luebke, William A. Leet, Joseph E. Zimmermann, Ronald J. Vangelisti, Terry L. Marker
  • Patent number: 5849976
    Abstract: Hydrocarbons are alkylated using slowly moving cylindrical beds of solid catalyst in a process featuring a cooling zone within the reaction zone and a moving bed catalyst regeneration zone. The catalyst passes downward through both zones, which may be stacked upon one another. The reaction zone is operated at liquid-phase conditions, and the catalyst is periodically subjected to a regeneration procedure employing a hydrogen-containing stream. Direct heat exchange within the reaction zone removes the heat of the reaction.
    Type: Grant
    Filed: April 29, 1996
    Date of Patent: December 15, 1998
    Assignee: UOP LLC
    Inventors: Christopher David Gosling, Daniel L. Weiler, Reenen Andre De Villiers
  • Patent number: 5849981
    Abstract: The cost of separating para-xylene from other xylene isomers and C.sub.9 aromatics by adsorption on zeolitic molecular sieves is reduced by the use of 1,4 diisopropylbenzene as a relatively high boiling desorbent. The desorbent has surprisingly high strength and selectivity characteristics with the preferred desorbent. The preferred adsorbent is an X zeolite containing barium or both barium and potassium ions at exchangeable cationic sites. The para-xylene components are selectively adsorbed onto the adsorbent. The non-adsorbed feed is then removed from the adsorbent and the para-xylene recovered by desorption.
    Type: Grant
    Filed: June 25, 1997
    Date of Patent: December 15, 1998
    Assignee: UOP LLC
    Inventor: Santi Kulprathipanja
  • Patent number: 5849979
    Abstract: A process for the removal of trace quantities of polynuclear aromatic compounds from the vapor effluent of a hydrocarbon dehydrogenation zone containing normally gaseous olefinic hydrocarbons, trace mononuclear aromatic compounds and trace polynuclear aromatic compounds by contacting the hot vapor effluent of a hydrocarbon dehydrogenation zone with a cold lean liquid absorption stream to absorb at least a portion of the trace polynuclear aromatic compounds to produce a rich liquid absorption stream and a gaseous olefin-containing hydrocarbon stream having a reduced concentration of polynuclear aromatic compounds.
    Type: Grant
    Filed: March 6, 1997
    Date of Patent: December 15, 1998
    Assignee: UOP LLC
    Inventors: Tom N. Kalnes, Bryan K. Glover, Lester F. Smith, Norman H. Scott
  • Patent number: 5849977
    Abstract: A process for the alkylation of alkenes having from 2 to 6 carbon atoms with an alkane having from 4 to 6 carbon atoms to afford an alkylate comprises reacting in the liquid phase the alkene and alkane under alkylation conditions in the presence of a novel catalyst comprising: a) a refractory inorganic oxide, b) the reaction product of a first metal halide and bound surface hydroxyl groups of the refractory inorganic oxide, c) a second metal cation, and d) optionally a zerovalent third metal. The refractory inorganic oxide is selected form the group consisting of alumina, titania, zirconia, chromia, silica, boria, silica-alumina, and combinations thereof and the first metal halide is a fluoride, chloride, or bromide of aluminum or boron. The second metal cation is selected from the group consisting of: monovalent metal cations in an amount from 0.0026 up to about 0.20 gram atoms per 100 grams refractory inorganic oxide for lithium, potassium, cesium, rubidium, silver, and copper, and from 0.012 to about 0.
    Type: Grant
    Filed: April 10, 1996
    Date of Patent: December 15, 1998
    Assignee: UOP
    Inventors: Joseph A. Kocal, Anil R. Oroskar
  • Patent number: 5847393
    Abstract: On line and essentially continuous measurements of hydrogen peroxide vapor in the presence of water vapor can be made using near infrared (NIR) spectroscopy using fiber optic cables to transmit infrared radiation between, e.g, a sterilization chamber and the NIR instrument. Measurement of hydrogen peroxide concentration in the foregoing manner is incorporated into a control system which automatically adds gaseous hydrogen peroxide to the sterilization chamber when the measured concentration falls below a precalculated value. Such a control system ensures the presence in the sterilization chamber of an adequate concentration of gaseous hydrogen peroxide to effect sterilization throughout the sterilization procedure.
    Type: Grant
    Filed: December 3, 1996
    Date of Patent: December 8, 1998
    Assignee: UOP
    Inventors: Rian Van Den Berg, Mark S. Zetter, Keith L. Miller, Terry R. Todd
  • Patent number: 5847392
    Abstract: On line and essentially continuous measurements of hydrogen peroxide vapor in the presence of water vapor can be made using near infrared (NIR) spectroscopy using fiber optic cables to transmit infrared radiation between, e.g, a sterilization chamber and the NIR instrument. Hydrogen peroxide absorbs selectively at about 1420 nm, where water vapor also absorbs, but the absorbance at 1420 nm can be corrected for water vapor measurements at remote wavelengths where H.sub.2 O.sub.2 is transparent. The measurement process may be conveniently made by applying a multivariant statistical technique to the spectrum obtained over one or more bands within the 900-2000 nm region using the correlation obtained for a calibration set for which analogous measurements are made over the same region.
    Type: Grant
    Filed: December 3, 1996
    Date of Patent: December 8, 1998
    Assignee: UOP
    Inventors: Rian Van Den Berg, Mark S. Zetter, Keith L. Miller, Terry R. Todd
  • Patent number: 5847252
    Abstract: A process for the production motor fuel components from isoparaffins by dehydrogenation, oligomerization and saturation uses a combination of low severity dehydrogenation, first and second feed input locations and a primary separation column that receives feed and effluent components to deliver a dehydrogenation zone feed and a motor fuel products. A separation column receives the an isobutane input stream and a product containing effluent stream to distill a dehydrogenation zone input steam. The dehydrogenation zone operates at low severity conditions to produce the effluent stream that compliments the operation of an oligomerization zone by delivering an effluent stream that is higher in pressure and contains inert paraffinic diluent materials. The oligomerization effluent passes to a saturation reaction zone that provides a saturated effluent stream.
    Type: Grant
    Filed: December 15, 1995
    Date of Patent: December 8, 1998
    Assignee: UOP LLC
    Inventors: Laurence O. Stine, Bipin V. Vora, Harold U. Hammershaimb
  • Patent number: 5847253
    Abstract: A process for the production of alkylaromatic hydrocarbons that operates with a high water content in an alkylation zone and a low water content in a transalkylation zone is disclosed. An aromatic feed and an acyclic feed are first passed through the alkylation reaction zone that operates at a high water content. A stripping column receives the effluent of the alkylation reaction zone, removes water and unreacted aromatic feed and produces a bottom stream containing unreacted aromatic feed and alkylated aromatics. A recycle column receives the bottom stream and produces an overhead stream of unreacted aromatic feed having a low water content. The overhead stream and a stream of polyalkylated aromatics are contacted in the transalkylation zone.
    Type: Grant
    Filed: March 18, 1997
    Date of Patent: December 8, 1998
    Assignee: UOP LLC
    Inventors: Perry K. Ho, Constante P. Tagamolila
  • Patent number: 5847230
    Abstract: In an etherification process that uses an FCC effluent as a source of isoolefins, the buildup of nitrites in an alcohol-containing stream that is recycled to the etherification zone is prevented by dragging at least a portion of a water-containing stream produced by a water washing of the FCC effluent and returning the water-containing stream to the FCC gas concentration zone. As a result, the etherification catalyst deactivation rate is reduced and without increasing the net amount of fresh water employed by the process combination.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: December 8, 1998
    Assignee: UOP LLC
    Inventors: Paul R. Cottrell, Ricardo Castillo
  • Patent number: 5843300
    Abstract: Removal of organic sulfur compounds, especially aromatic sulfur compounds from an FCC feedstock with minimal adsorption of aromatic hydrocarbons is achieved using a zeolite X exchanged with alkali or alkaline earth cations. KX is an especially effective adsorbent. Where the KX is loaded with a group VIII metal, particular palladium or platinum, the adsorbent is effectively regenerated by treatment with hydrogen at elevated temperatures.
    Type: Grant
    Filed: December 29, 1997
    Date of Patent: December 1, 1998
    Assignee: UOP LLC
    Inventors: Herman A. Zinnen, Laszlo T. Nemeth, Jennifer R. Holmgren, Blaise J. Arena
  • Patent number: 5843377
    Abstract: An FCC separation arrangement for a catalyst and hydrocarbon contacting zone having a downcomer terminus section uses a compact separation vessel to provide a quick separation between catalyst and hydrocarbon gases in a compact area that also accommodates the use of cyclone separators for a further removal of catalyst from the hydrocarbon gases. The separation system uses a gas collection conduit that incorporates an expansion element for accommodating differential growth between the riser separation vessel and cyclones in the same compact area. The system is suitable for single downcomers or multiple downcomers. The system can be used with a closed containment vessel or in an entirely open system that eliminates the use of a containment vessel.
    Type: Grant
    Filed: August 26, 1996
    Date of Patent: December 1, 1998
    Assignee: UOP LLC
    Inventors: James A. Fandel, David A. Lomas, Steven Niewiedzial, Daniel R. Johnson, James Althoff
  • Patent number: 5840181
    Abstract: Silicalite with increased hydrophobicity may be made by steaming silicalite in an atmosphere of at least 10% water vapor at temperatures of 650.degree.-850.degree. C. When used as monodisperse spheres with a diameter in the range 1-20 microns such ultrahydrophobic silicalite is an excellent adsorbent for chromatographic separation of polar materials, including fatty acids, at both the analytical level and preparative level using simulated moving bed techniques.
    Type: Grant
    Filed: October 14, 1997
    Date of Patent: November 24, 1998
    Assignee: UOP LLC
    Inventors: Robert Lyle Patton, Beth McCulloch, Peter K. Nickl
  • Patent number: 5840176
    Abstract: A method for replacing particles in a process that transfers particles is disclosed. This invention employs a seal zone which is in communication with two zones of the process and in which particles that are being added to the process are purged. This invention allows particles to be replaced without reducing the normal rate of particle transfer through the process, which results in a savings in downtime costs. This invention is adaptable to a multitude of processes for the catalytic conversion of hydrocarbons in which deactivated catalyst particles are regenerated.
    Type: Grant
    Filed: August 12, 1996
    Date of Patent: November 24, 1998
    Assignee: UOP LLC
    Inventors: Roger R. Lawrence, Frank T. Micklich, Charles T. Ressl, Paul A. Sechrist