Patents Represented by Attorney, Agent or Law Firm W. Brinton Yorks, Jr.
  • Patent number: 7537567
    Abstract: An ultrasonic diagnostic imaging system and method are described in which spatially compounded images are produced by transmitting ultrasound beams in different directions during a common transmit-receive interval. Echoes are received from the different beam directions and are beamformed by a multiline beamformer to produce differently steered beams of coherent echo signals. The echoes are combined on a spatial basis with echoes from different look directions which correspond to the same spatial location being combined. The resulting spatially compounded image is displayed.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: May 26, 2009
    Assignee: Koninklijke Philips Electronics, N.V.
    Inventors: James Jago, Brent Robinson
  • Patent number: 7529393
    Abstract: A three dimensional ultrasonic diagnostic imaging system is operated to guide or observe the operation of an invasive medical device (30) in three dimensions. The invasive medical device (30) is shown in a detailed ultrasonic image and the balance of the volumetric region (120) in which the device is located is shown in a wide field of view. The detailed and wide fields of view may be displayed separately or overlapping in spatial alignment on an image display (18). The wide field of view may be shown in two or three dimensions. A quantified display may be shown together with the wide and detailed anatomical displays. The detailed view may also be shown in an enlarged or zoomed format.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: May 5, 2009
    Assignee: Koninklijke Philips Electronics, N.V.
    Inventors: Michael Peszynski, Ivan Salgo, Bernard Savord, Steven Scampini
  • Patent number: 7497830
    Abstract: An ultrasonic probe for three dimensional scanning includes a one-dimensional array transducer which is mechanically swept back and forth. As the array transducer is swept in one direction the array scans a volumetric region with image planes which are alternately scanned in opposite beam scanning directions to scan the volumetric region in a zigzag pattern. As the array transducer is swept in the opposite direction the volumetric region is again scanned with image planes of alternating beam scanning directions to again scan the volumetric region in a zigzag pattern. In a preferred embodiment the image planes scanned in one sweep direction intersect the centers of the image planes scanned in the other sweep direction, and the image planes of each sweep are approximately joined at their lateral edges.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: March 3, 2009
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Xiang-Ning Li
  • Patent number: 7484412
    Abstract: An ultrasound probe includes a transducer (46) which is mechanically oscillated to sweep beams from the transducer over an image region of a subject. The transducer is located in a first compartment of a fluid-filled chamber which is coupled to a second compartment of the fluid-filled chamber by a bubble trap tube. A drive shaft (50) which is coupled to oscillate the transducer enters and passes through the secondary chamber before terminating at the transducer oscillation mechanism in the main chamber. This locates the dynamic seal of the drive shaft which is connected between the fluid-filled chamber and the outside air so that any air leakage of the seal will leak into the secondary compartment and not into the compartment where the transducer is located.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: February 3, 2009
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Jeffrey Hart, Terry Wray
  • Patent number: 7448998
    Abstract: A synthetic focus ultrasound system is described which is operated in a hybrid fashion. System operation alternates between synthetic focus acquisition and conventional focused beam acquisition. This makes possible, for example, the acquisition and display of harmonic images. Speckle artifacts in the synthetic focused ultrasound images may be reduced by combining signals from different sub-apertures which view the image field from different look directions. In a described embodiment, sets of motion maps are be produced for different sub-apertures of the array transducer, then compounded to reduce speckle. One or more identified regions of interest within a synthetic focused ultrasound image may be processed differently from other regions of the image to highlight or better define particular motional characteristics within the regions of interest, such as turbulent flow or different velocities of flow or motion.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: November 11, 2008
    Assignee: Koninklijke Philips Electronics, N.V.
    Inventor: Brent S. Robinson
  • Patent number: 7361144
    Abstract: The invention relates to an ultrasound imaging system for forming an echographic image of a medium, which system includes a set [REC] of transducer elements [EL] which are operative in a transmission mode and in a reception mode for ultrasound waves, construction means [REB] for constructing echographic signals on the basis of signals [S[1] . . . S[N]] received on the transducer elements [EL], display means [DIS] which are coupled to the construction means [REB] in order to display an image of the medium formed by means of the echographic signals. The construction means [REB] are such that in so-called exclusion zones, in which a coherent reflector is detected and which are determined by determination means [DET], the reception delays [D] are estimated in a manner [INT] other than that [CORR] used for the other zones. The calculation [CAL] of echographic signals is then carried out on the basis of the estimated delays [D[Z],Di[Z}}.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: April 22, 2008
    Assignee: Koninklijke Philips Electronics, N.V.
    Inventors: Claire Levrier, Claude Cohen-Bacrie, Nicholas Villain, Jean-Michel Lagrange, Robert R. Entrekin
  • Patent number: 7270634
    Abstract: A three dimensional ultrasonic diagnostic imaging system is operated to guide or observe the operation of an invasive medical device (30) in three dimensions. The appearance of the invasive device (30) in the three dimensional ultrasonic image is enhanced to be more readily observable by a clinician. The enhancement is produced by transmitting a greater ultrasonic beam density in a subvolumetric region including the invasive device (30) than in the surrounding portion of the volumetric region (120). The beam density may be uniformly high in the subvolumetric region and uniformly low in the surrounding region, or may taper from a relatively high beam density around the invasive device (30) to a minimum beam density at distances removed from the invasive device (30).
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: September 18, 2007
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Steven Scampini, Michael Peszynski, Ivan Salgo, Bernard Savord
  • Patent number: 7037264
    Abstract: A two-dimensional array transducer probe is used to image regions of the body that are acoustically obstructed from conventional view by objects such as the lungs or ribs. The probe is located against the body at an acoustic window which provides acceptable ultrasonic transmissivity between the transducer array and the body. While maintaining the probe at its acoustic window, an image plane location is manipulated by adjusting the beam steering directions. The image plane can be tilted in the elevation direction, moved laterally, and/or rotated about a center axis to position the image plane so that the obstructed anatomy is effectively imaged for diagnosis.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: May 2, 2006
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: McKee Dunn Poland
  • Patent number: 6951543
    Abstract: A diagnostic ultrasound imaging system displays a gallery of ultrasound images each of which was obtained using a different setting for the imaging system. One of the images in the gallery is selected, and the imaging system is then set up to use the setting that was used to obtain the selected ultrasound image. The images displayed in the gallery may be obtained using different settings or different combinations of settings, and settings may be selected by selecting one or more images from each of several sequentially displayed galleries.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: October 4, 2005
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: David N. Roundhill
  • Patent number: 6921363
    Abstract: A transesophageal probe shaft has a cover which is formed by a plurality of separate layers joined by a pressure sensitive adhesive. In a preferred embodiment the cover forms the outer cover of an articulating section of the probe. The layers are chosen to be thin enough so that the stiffness of the cover does not significantly restrain the bending of the articulating section. The adhesive viscosity is chosen to enable the joined layers to be able to move relative to each other as the probe is bent, and to be able to flow to fill any small cut in the cover caused by biting through the cover.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: July 26, 2005
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Heather Beck Knowles
  • Patent number: 6882271
    Abstract: The need for service repair calls for a medical imaging system is reduced by enabling the operator to diagnose and, at times, to repair system problems without calling a repair service. A system diagnostics package includes an interactive diagnostic procedure which interacts with the system operator to receive input and information concerning a system problem. The diagnostics package uses this qualitative operator input, augmented if necessary by quantitative system data, to logically arrive at a system diagnosis. In a preferred embodiment the ultrasound system is able to learn about and discover new problem sources and their solutions. This information can be retained by the imaging system and used to repair similar problems in the system in the future. The information can be communicated to the system manufacturer so that the knowledge learned by one system can be disseminated to other systems to expedite their diagnosis and repair.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: April 19, 2005
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: David Hendrickson
  • Patent number: 6865512
    Abstract: A medical imaging system diagnostics package includes the ability to analyze operator usage data to detect aspects of the manner in which the system is used which may be a source of operating problems. Detecting problems arising from the manner in which the system is used can reduce the number of “no trouble found” repair calls and can often be permanently resolved by additional operator training in the use of the system. The diagnostic package includes the ability to assess the effects of software aging by analyzing the status of components of the medical system which are used by software such as registers, memory and disk drives. The results of this analysis can be used to improve software performance which is degraded but not failing completely such as system slowdowns and lengthened response times.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: March 8, 2005
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: David Hendrickson
  • Patent number: 6860854
    Abstract: A synthetic focus ultrasound system is described which is operated in a hybrid fashion. System operation alternates between synthetic focus acquisition and conventional focused beam acquisition. This makes possible, for example, the acquisition and display of harmonic images. Speckle artifacts in the synthetic focused ultrasound images may be reduced by combining signals from different sub-apertures which view the image field from different look directions. In a described embodiment, sets of motion maps are be produced for different sub-apertures of the array transducer, then compounded to reduce speckle. One or more identified regions of interest within a synthetic focused ultrasound image may be processed differently from other regions of the image to highlight or better define particular motional characteristics within the regions of interest, such as turbulent flow or different velocities of flow or motion.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: March 1, 2005
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Brent S. Robinson
  • Patent number: 6821250
    Abstract: An ultrasound system has a plurality of locations around the control panel at which a probe holder may be located. The probe holder may be mounted by the user on the left or right side of the control panel to accommodate left-handed or right-handed users. The illustrated embodiments show different mechanisms by which a probe holder may be movably mounted to the ultrasound system. In one embodiment a plurality of probe holders swing or slide out for use, and stow inside the system when not in use.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: November 23, 2004
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Robert Mesaros, Yas Matsui
  • Patent number: 6784600
    Abstract: The invention is directed towards structures for use with micro-formed membrane ultrasonic transducers, and methods for fabricating the structures. In one embodiment, the transducer includes a planar member having a piezoelectric material and spaced apart electrodes disposed on the planar member and coupled to the piezoelectric material for applying an electric field to the layer, and an acoustic backing member joined to the electrodes. In another embodiment, the transducer includes a planar member having a piezoelectric material that adjoins a semiconductor material, the semiconductor material having monolithically formed active circuits formed in the layer and coupled to the piezoelectric material. In still another embodiment, the transducer includes a planar member having a piezoelectric material, and an acoustic backing member having an adjoining layer of a semiconductor material having monolithically formed active circuits, the active circuits being coupled to the electrodes.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: August 31, 2004
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Mareike Katharine Klee, Georg Schmitz, John D. Fraser
  • Patent number: 6761689
    Abstract: An ultrasonic apparatus and method are described in which a volumetric region of the body is imaged by biplane images. One biplane image has a fixed planar orientation to the transducer, and the plane of the other biplane image can be varied in relation to the fixed reference image. In a preferred embodiment one image can be rotated relative to the other, and can be tilted relative to the other. An image orientation icon is shown on the display screen together with the two biplane images depicting the relative orientation of the two planar images.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: July 13, 2004
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Ivan Salgo, Douglas Demers, Mark Ward, Janice Frisa, McKee Dunn Poland, Bernard Savord, Paul Detmer
  • Patent number: 6755786
    Abstract: An ultrasonic diagnostic imaging system is described in which two planes of a volumetric region which are in different elevation planes are scanned in real time. In one embodiment the two planes are scanned in the sector format with a common apex, causing corresponding depths of the two images to be separated by the same distance in elevation. In another embodiment one image plane has a fixed orientation with respect to the imaging probe and the location of the other image plane can be adjusted by the user.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: June 29, 2004
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Janice Frisa, McKee Dunn Poland
  • Patent number: 6755788
    Abstract: A plurality of planes are scanned in real time to provide a display of images in the scanned planes in real time. The displayed images are accompanied by an orientation icon which depicts the relative inclination of the displayed planes. The icon includes a perspective view of the outline of one of the images as seen from the scanning transducer, with the aspect ratio of the outline varying to provide a visual depiction of the instantaneous inclination of the image planes. The icon may also include a numerical indication of the relative inclination and an indication of the left-right orientation of the images relative to the scanning transducer.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: June 29, 2004
    Assignee: Koninklijke Philips Electronics N. V.
    Inventors: Douglas Armand Demers, Mckee Dunn Poland
  • Patent number: 6743174
    Abstract: An ultrasonic diagnostic imaging system includes a predetermined TGC characteristic which is automatically selected or calculated at the initiation of a diagnostic procedure. An automatic TGC circuit analyzes current image data to calculate an adjustment to the predetermined TGC characteristic when activated by the clinician. The ultrasound system produces a displayed TGC curve which illustrates the predetermined TGC characteristic as modified by automatic adjustment and any manual refinement done by the clinician. In a preferred embodiment automatic TGC modification is accompanied by automatic overall gain and dynamic range adjustment to automatically optimize image quality.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: June 1, 2004
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Gary Ng, Brian Hendee Smith
  • Patent number: D512508
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: December 6, 2005
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Robert Mesaros