Patents Represented by Attorney, Agent or Law Firm W. Douglas Carothers, Jr.
  • Patent number: 7636522
    Abstract: A coolerless photonic integrated circuit (PIC), such as a semiconductor electro-absorption modulator/laser (EML) or a coolerless optical transmitter photonic integrated circuit (TxPIC), may be operated over a wide temperature range at temperatures higher then room temperature without the need for ambient cooling or hermetic packaging. Since there is large scale integration of N optical transmission signal WDM channels on a TxPIC chip, a new DWDM system approach with novel sensing schemes and adaptive algorithms provides intelligent control of the PIC to optimize its performance and to allow optical transmitter and receiver modules in DWDM systems to operate uncooled. Moreover, the wavelength grid of the on-chip channel laser sources may thermally float within a WDM wavelength band where the individual emission wavelengths of the laser sources are not fixed to wavelength peaks along a standardized wavelength grid but rather may move about with changes in ambient temperature.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: December 22, 2009
    Assignee: Infinera Corporation
    Inventors: Radhakrishnan L. Nagarajan, Fred A. Kish, Jr., David F. Welch, Drew D. Perkins, Masaki Kato
  • Patent number: 7634195
    Abstract: A digital optical network (DON) is a new approach to low-cost, more compact optical transmitter modules and optical receiver modules for deployment in optical transport networks (OTNs). One important aspect of a digital optical network is the incorporation in these modules of transmitter photonic integrated circuit (TxPIC) chips and receiver photonic integrated circuit (TxPIC) chips in lieu of discrete modulated sources and detector sources with discrete multiplexers or demultiplexers.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: December 15, 2009
    Assignee: Infinera Corporation
    Inventors: Jagdeep Singh, Drew Perkins, David F. Welch, Mark Yin, Fred A. Kish, Jr., Stephen G. Grubb, Robert R. Taylor, Vincent G. Dominic, Matthew L. Mitchell, James R. Dodd, Jr.
  • Patent number: 7630595
    Abstract: Thermo-optical devices providing heater recirculation in an integrated optical device are described. The thermo-optical devices include at least one waveguide having a non-linear path length in thermal communication with a thermal device. Methods of fabrication and use are also disclosed.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: December 8, 2009
    Assignee: Infinera Corporation
    Inventors: Wei Chen, Wenlu Chen
  • Patent number: 7625771
    Abstract: A method for reducing insertion loss in a transition region between a plurality of input or output waveguides to a free space coupler region in a photonic integrated circuit (PIC) includes the steps of forming a passivation layer over the waveguides and region and forming the passivation overlayer such that it monotonically increases in thickness through the transition region to the free space coupler region.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: December 1, 2009
    Assignee: Infinera Corporation
    Inventors: Charles H. Joyner, Mark J. Missey, Radhakrishnan L. Nagarajan, Fred A. Kish, Jr.
  • Patent number: 7627205
    Abstract: Thermo-optical devices providing heater recirculation in an integrated optical device are described. The thermo-optical devices include at least one waveguide having a non-linear path length in thermal communication with a thermal device. Methods of fabrication and use are also disclosed.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: December 1, 2009
    Assignee: Infinera Corporation
    Inventors: Wei Chen, Wenlu Chen
  • Patent number: 7627254
    Abstract: A system, apparatus and method are described for controlling the gain across one or more amplifier nodes within an optical span. In one embodiment, a fast local amplifier constant gain control loop is provided that maintains a constant gain across an amplifier node for each of the channels within an optical signal. A slow link level gain setting control loop is provided to set and/or adjust the target gain on the amplifier node(s). A gain adjust sequence is performed by the slow link level gain setting control loop to adjust the target gain(s) in response to various events and mechanisms. A “time of flight” protection method is also provided to ensure consistency between the fast local amplifier gain control loop and the slow link level gain setting control loop.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: December 1, 2009
    Assignee: Infinera Corporation
    Inventors: Matthew L. Mitchell, Robert B. Taylor, Edward E. Sprague
  • Patent number: 7577325
    Abstract: A method of fabricating a passive polarization sorter includes the steps of providing first and second waveguides. The first waveguide has an input and an output. The first waveguide supporting at least one guided TE polarized mode of mode ranking mode-i-TE and at least one guided TM polarized mode of mode ranking mode-j-TM. The second waveguide is positioned adjacent to the first waveguide, and the first and second waveguides are shaped to form an adiabatic region in which light having one of the TE and TM polarized modes remains within the first waveguide, and light having the other one of the TE and TM polarized modes evanescently couples into the second waveguide.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: August 18, 2009
    Assignee: Infinera Corporation
    Inventor: Brent E. Little
  • Patent number: 7574146
    Abstract: An optical transmission network includes an optical transmitter photonic integrated circuit (TxPIC) chip, utilized in an optical transmitter and has a plurality of monolithic modulated sources integrated for multiple signal channels on the same semiconductor chip is provided with channel equalization at the optical receiver side of the network that permits one or more such integrated modulated sources in the TxPIC chip to be out of specification thereby increasing the chip yield and reducing manufacturing costs in the deployment of such TxPIC chips. FEC error counts at the FEC decoder on the optical receiver side of the network includes counters that accumulate a plurality of bit pattern-dependent error counts based on different N-bit patterns in the received data bit stream. The accumulated counts of different N-bit patterns are utilized to provide for corrections to threshold and phase relative to the bit eye pattern as well as provided for weight coefficients for the optical receiver equalization system.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: August 11, 2009
    Assignee: Infinera Corporation
    Inventors: Ting-Kuang Chiang, Vincent G. Dominic, Robert B. Taylor
  • Patent number: 7570845
    Abstract: Electro-optic amplitude varying elements (AVEs) or electro-optic multi-function elements (MFEs) are integrated into signal channels of photonic integrated circuits (PICs) or at the output of such PICs to provide for various optical controlling and monitoring functions. In one case, such PIC signal channels may minimally include a laser source and a modulator (TxPIC) and in another case, may minimally include a photodetector to which channels, in either case, an AVE or an MFE may be added.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: August 4, 2009
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Fred A. Kish, Jr., Radhakrishnan L. Nagarajan, Alan C. Nilsson, Robert B. Taylor
  • Patent number: 7570671
    Abstract: An apparatus and method for uniformly sharing across a plurality of channel signals FEC coding gain which may be achieved through FEC encoding of a higher baud rate electrical data signal or through multiplexed or combined electrical data signals from multiple data sources prior to their subsequent demultiplexing and separate generation into optical channel signals which are multiplexed and launched onto an optical transmission medium. The optical signal generation is achieved through reverse multiplexing of the higher baud rate data signal or of the multiplexed, FEC encoded plural data signals.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: August 4, 2009
    Assignee: Infinera Corporation
    Inventors: Drew D. Perkins, Michael D. Jarchi, Satish K. Sridharan
  • Patent number: 7555178
    Abstract: A periodic optical filter for interleaving a plurality of optical signals to provide a multiplexed signal for transmission over an optical fiber is disclosed. The periodic optical filter includes a first optical filter constructed to receive at least two optical signals through an input port to provide at least one filtered optical signal. The periodic optical filter also includes a second optical filter, in communication with the first optical filter, constructed to receive the filtered optical signal from the first optical filter through an intermediate port to provide a multiplexed signal for transmission through an output port. At least one of the optical filters includes an infinite-impulse response filter and at least one of the optical filters includes a finite-impulse response filter. Methods of fabrication and methods of use including the periodic optical filter are disclosed.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: June 30, 2009
    Assignee: Infinera Corporation
    Inventor: Wei Chen
  • Patent number: 7555220
    Abstract: An optical equalizer/dispersion compensator (E/CDC) comprises an input/output for receiving a multiplexed channel signal comprising a plurality of channel signals of different wavelengths. An optical amplifier may be coupled to receive, as an input/output, the multiplexed channel signals which amplifier may be a semiconductor optical amplifier (SOA) or a gain clamped-semiconductor optical amplifier (GC-SOA). A variable optical attenuator (VOA) is coupled to the optical amplifier and a chromatic dispersion compensator (CDC) is coupled to the variable optical attenuator. A mirror or Faraday rotator mirror (FRM) is coupled to the chromatic dispersion compensator to reflect the multiplexed channel signal back through these optical components The E/CDC components may be integrated in a photonic integrated circuit (PIC) chip.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: June 30, 2009
    Assignee: Infinera Corporation
    Inventors: Stephen G. Grubb, Charles H. Joyner, Frank H. Peters, Fred A. Kish, Jr., Drew D. Perkins
  • Patent number: 7551815
    Abstract: A method is disclosed for monitoring and controlling the bit error rate (BER) in an optical communication network where an optical receiver in the optical transmission network. The method includes the steps of decombining a combined channel signal received from the network and then monitoring a real time bit error rate (BER) of a decombined channel signal. The determined BER is then communicated, such as through an optical service channel (OSC) to an optical transmitter source that is the source of origin of the channel signal. Based upon the determined BER, the chirp of a channel signal modulator at the optical transmitter source that generated the monitored channel signal is adjusted by, for example, adjusting its bias. The same channel signal received at the optical receiver can be monitored again to determine if an acceptable level for the BER has been achieved by the previous chirp adjustment.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: June 23, 2009
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Ting-Kuang Chiang, Vincent G. Dominic, Fred A. Kish, Jr., Radhakrishnan L. Nagarajan
  • Patent number: 7546007
    Abstract: A broadband optical via provides a low loss interconnection between waveguides in two vertically adjacent planar waveguiding layers. Two waveguides, one in each planar layer, evanescently interact over an interaction length, and substantially all of the power on one waveguide is transferred to the second waveguide. The relative detuning between waveguides is varied along the interaction region by tapering the width of one or both guides along the direction of propagation. The interaction strength is also varied by varying the physical separation between the two waveguides such that the interaction approaches zero near the two ends of the interaction length. The performance of the broadband optical via is fabrication tolerant, polarization tolerant, wavelength tolerant, and dimensionally tolerant.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: June 9, 2009
    Assignee: Infinera Corporation
    Inventor: Brent E. Little
  • Patent number: 7546001
    Abstract: Monolithic photonic integrated circuits (PICs) utilize forward error correction (FEC) joint encoder or plural encoders or a joint decoder or plural decoders.
    Type: Grant
    Filed: April 14, 2007
    Date of Patent: June 9, 2009
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Radhakrishnan L. Nagarajan, Fred A. Kish, Jr., Vincent G. Dominic, Ting-Kuang Chiang
  • Patent number: 7539365
    Abstract: Electro-optic amplitude varying elements (AVEs) or electro-optic multi-function elements (MFEs) are integrated into signal channels of photonic integrated circuits (PICs) or at the output of such PICs to provide for various optical controlling and monitoring functions. In one case, such PIC signal channels may minimally include a laser source and a modulator (TxPIC) and in another case, may minimally include a photodetector to which channels, in either case, an AVE or an MFE may be added.
    Type: Grant
    Filed: February 3, 2007
    Date of Patent: May 26, 2009
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Fred A. Kish, Jr., Radhakrishnan L. Nagarajan, Alan C. Nilsson, Robert L. Taylor
  • Patent number: 7529436
    Abstract: A photonic integrated circuit that includes a plurality of active and passive components on a substrate where one of the components is an optical combiner/decombiner having at least one free space coupler region and a plurality of longitudinal ridge waveguides each extending in the circuit from a first region of the waveguide and coupled at a second region of the waveguide at the free space coupler region. A first dielectric layer formed over the ridge waveguides and the free space coupler region. The first dielectric layer monotonically increases in cross-sectional thickness from the waveguide first region to the second region to reduce signal insertion losses in transitioning from the ridge waveguides to the free space coupler region. The first dielectric layer may be covered with a second passivation layer. The first dielectric layer may be SiOx, SiNx or SixONy and the second passivation layer may be BCB, ZnS or ZnSe.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: May 5, 2009
    Assignee: Infinera Corporation
    Inventors: Charles H. Joyner, Mark J. Missey, Radhakrishnan L. Nagarajan, Fred A. Kish, Jr.
  • Patent number: 7526150
    Abstract: Electro-optic amplitude varying elements (AVEs) or electro-optic multi-function elements (MFEs) are integrated into signal channels of photonic integrated circuits (PICs) or at the output of such PICs to provide for various optical controlling and monitoring functions. In one case, such PIC signal channels may minimally include a laser source and a modulator (TxPIC) and in another case, may minimally include a photodetector to which channels, in either case, an AVE or an MFE may be added.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: April 28, 2009
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Fred A. Kish, Jr., Radhakrishnan L. Nagarajan, Alan C. Nilsson, Robert B. Taylor
  • Patent number: 7526151
    Abstract: An intermediate structure used to form an integrated optics device comprising a substrate, a cladding on the substrate, at least one real waveguide on the cladding, and at least one dummy waveguide optically coupled with the real waveguide. The real waveguide forms a part of a predetermined planar lightwave circuit. The dummy waveguide does not form a part of the predetermined planar lightwave circuit.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: April 28, 2009
    Assignee: Infinera Corporation
    Inventors: Brent E. Little, Wei Chen, John V. Hryniewicz, Wenlu Chen, David M. Gill, Oliver King, Roy R. Davidson
  • Patent number: 7519246
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: April 14, 2009
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Jr., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Ting-Kuang Chiang, Robert Grencavich, Vinh D. Nguyen, Donald J. Pavinski, Jr., Marco E. Sosa