Patents Represented by Attorney William D. Jackson
  • Patent number: 7022797
    Abstract: A monomer stream containing propylene is supplied to a polymerization reactor which is operated under temperature and pressure conditions effective for the production of a stereoregular propylene polymer fluff. A titanium-based supported Ziegler-Natta catalyst having a titanium content of at least 1.7 wt. % and incorporating an internal electron donor is incorporated into the monomer stream. A trialkylaluminum co-catalyst is supplied to the monomer stream in an amount to provide an aluminum/titanium molar ratio within the range of 50–500. A silicon-based external electron donor is also supplied to the monomer stream in an amount to provide an aluminum/silicon molar ratio within the range of 10–500. Polymer fluff recovered from the polymerization reactor has a melt flow rate of at least 200 grams/10 minutes, and a xylene soluble content of no more than 4 wt. %.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: April 4, 2006
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth P. Blackmon, Shabbir Ahmedbhai Malbari
  • Patent number: 7019044
    Abstract: A process for producing polypropylene having increased melt strength, the process comprising (i) homopolymerising polypropylene or copolymerising propylene with one or more comonomers selected from ethylene and C4 to C101-olefins to produce a polypropylene homopolymer or copolymer respectively having a double bond concentration of at least 0.1 per 10,000 carbon atoms, (11) irradiating the polypropylene with an electron beam having an energy of at least 5 MeV and at radiation dose of at least 5 kGray, and (iii) melting and mechanically processing the melt of polypropylene to form long chain branches on the polypropylene molecules.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: March 28, 2006
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Guy Debras, Marc Dupire, Jacques Michel
  • Patent number: 7014868
    Abstract: A composition comprising a guest/host assembly having a spheroidal host assembly comprised of a hexamer of a methylene-bridged trihydroxybenzene tetramer and a guest component encapsulated within the spheroidal host assembly to provide a highly stable guest/host assembly. A guest component, specifically a pharmaceutically active agent, is encapsulated within the spheroidal host assembly to provide a guest/host assembly exhibiting a high stability, being stable upon a solubilization in a mixture of acetone and water in a one-to-one ratio for a period of one day at a temperature of 37° C. The pharmaceutically active agent encapsulated within the spheroidal hexamer is selected from the group consisting of Depakote, Wellbutrin, Allegra, Neurontin, Zovirax, and Claritin. A process for the preparation of a hexameric complex, as described above, from a methylene-bridged tetramer solubilized in an amphiphilic organic solvent. An activator is incorporated into the amphiphilic solvent containing the tetramer.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: March 21, 2006
    Assignee: Curators of the University of Missouri
    Inventor: Jerry L. Atwood
  • Patent number: 6987078
    Abstract: A process for the regeneration of a deactivated zeolite beta catalyst such as rare earth promoted zeolite beta catalyst deactivated in the course of an aromatic alkylation reaction. A zeolite beta conversion catalyst deactivated with the deposition of coke is heated to a temperature in excess of 300° C. in an oxygen-free environment. An oxidative regeneration gas is supplied to the catalyst bed with oxidation of a portion of a relatively porous coke component to produce an exotherm moving through the catalyst bed. At least one of the temperature and oxygen content of the gas is progressively increased to oxidize a porous component of the coke. Regeneration gas is supplied having at least one of an increased oxygen content or increased temperature to oxidize a less porous refractory component of the coke. The regeneration process is completed by passing an inert gas through the catalyst bed at a reduced temperature.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: January 17, 2006
    Assignee: Fina Technology, Inc.
    Inventors: Kevin P. Kelly, James R. Butler
  • Patent number: 6977321
    Abstract: A process for the production of propylene from an olefinic feedstock containing at least one olefin of C4 or greater, the process comprising contacting the olefinic feedstock with a catalyst of the MFI-type having a silicon/aluminum atomic ratio of at least about 180 to produce an effluent containing propylene, the propylene yield on an olefin basis being from 30 to 50k based on the olefinic content of the feedstock.
    Type: Grant
    Filed: December 3, 1998
    Date of Patent: December 20, 2005
    Assignee: Fina Research S.A.
    Inventors: Jean-Pierre Dath, Luc Delorme, Jacques-François Grootjans, Xavier Vanhaeren, Walter Vermeiren
  • Patent number: 6951968
    Abstract: A process for the production of olefins by catalytic cracking, the process comprising feeding a hydrocarbon feedstock containing at least one olefin of C4 or greater over a MFI-type crystalline silicate catalyst to produce an effluent containing at least one olefin of C2 or greater by catalytic cracking which is selective towards light olefins in the effluent, whereby for increasing the catalyst stability by limiting formation of coke thereon during the cracking process the catalyst has a silicon/aluminum atomic ratio of at least about 180, the olefin partial pressure is from 0.1 to 2 bars, and the feedstock contacts the catalyst at an inlet temperature of from 500 to 600° C.
    Type: Grant
    Filed: December 5, 1998
    Date of Patent: October 4, 2005
    Assignee: Fina Research S.A.
    Inventors: Jean-Pierre Dath, Luc Delorme, Jacques-François Grootjans, Xavier Vanhaeren, Walter Vermeiren
  • Patent number: 6946521
    Abstract: A polyethylene resin comprising from 35 to 49 wt. % of a first polyethylene fraction of high molecular weight and from 51 to 65 wt. % of a second polyethylene fraction of low molecular weight, the first polyethylene having a density of up to 0.930 g/cm3, and an HLMI of less than 0.6 g/10 min and the second polyethylene fraction comprising a high density polyethylene having a density of at least 0.969 g/cm3 and an MI2 of greater than 10 g/10 min, and the polyethylene resin, having a density of great 0.946 g/cm3, an HLMI of from 1 to 100 g/10 min, a dynamical viscosity, measured at 0.01 radians/second, greater than 200,000 Pa.s and a ratio of the dynamical viscosities measured at, respectively 0.01 and 1 radians/second greater than 8.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: September 20, 2005
    Assignees: ATOFINA Research S.A., Solvay Polyolefins Europe-Belgium S.A.
    Inventors: Olivier Miserque, Jacques Michel, Marc Dupire, Fabian Siberdt, Jean-Louis Costa, Serge Bettonville, Virgil Rouyer, Eric Damme
  • Patent number: 6933418
    Abstract: A process for the production of ethylbenzene by the ethylation of benzene in the critical phase over a molecular sieve aromatic alkylation catalyst comprising cerium-promoted zeolite beta. An aromatic feedstock having a benzene content of at least 90 wt. % is supplied into a reaction zone and into contact with the cerium-promoted zeolite beta having a silica/alumina mole ratio within the range of 50-150 and a cerium-aluminum ratio of 0.5-1.5. Ethylene is supplied to the alkylation reaction zone in an amount to provide a benzene/ethylene mole ratio of 1-15. The reaction zone is operated at temperature and pressure conditions in which benzene is in the super critical phase to cause ethylation of the benzene in the presence of the cerium zeolite beta alkylation catalyst. An alkylation product is produced containing ethylbenzene as a primary product with the attendant production of heavier alkylated by-products of no more than 60 wt. % of the ethylbenzene.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: August 23, 2005
    Assignee: Fina Technology, Inc.
    Inventors: Kevin P Kelly, James R. Butler
  • Patent number: 6897346
    Abstract: A process for the transalkylation of polyalkylated aromatic compounds over a high porosity zeolite-Y molecular sieve having a surface area of no more than 500 m2/g. A feedstock comprising a polyalkylated aromatic component, including polyalkylbenzenes in which the predominant alkyl substituents contain from 2 to 4 carbon atoms, is supplied to a transalkylation reaction zone containing the high porosity zeolite-Y catalyst. Benzene is also supplied to the transalkylation zone, and the reaction zone is operated under temperature and pressure conditions to maintain the polyalkylated aromatic component in the liquid phase and which are effective to cause disproportionation of the polyalkylated aromatic component to arrive a disproportionation product having a reduced polyalkylbenzene content and an enhanced monoalkylbenzene content.
    Type: Grant
    Filed: June 10, 1999
    Date of Patent: May 24, 2005
    Assignee: Fina Technology, Inc.
    Inventors: James T. Merrill, James R. Butler
  • Patent number: 6894132
    Abstract: Provided is a catalyst for the polymerization of olefins of general formula: R?(C4R?mC5C4R?n)XMeQ wherein X is an hetero-atom ligand with one or two lone pair electrons selected from the elements of Group VA or VIA which can be substituted or non-substituted: (C4Rm?C5C4Rn?) is a symmetrically substituted, 3,6-substituted fluorenyl; R? is hydrogen or hydrocarbyl radical having from 1-20 carbon atoms, a halogen, an alkoxy, an alkoxy alkyl or an alkylamino or alkylsilylo radical, each R? may be the same or different and m and n independently are 1, 2 3 or 4, with the proviso that the bilateral symmetry is maintained; R? is a structural bridge between X and the (C4R?mC5C4R?n) ring to impart stereorigidity; Q is a hydrocarbyl radical having 1-20 carbon atoms or is a halogen; Me is a Group IIIB, IVB, VB, or VIB metal as positioned in the Periodic Table of Elements; and Me can be in any of its theoretically possible oxidation states.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: May 17, 2005
    Assignee: Atofina Research S.A.
    Inventor: Abbas Razavi
  • Patent number: 6878327
    Abstract: A method for the production of polypropylene fibers from a propylene polymer including isotactic polypropylene produced by the polymerization of propylene in the presence of an isospecific metallocene catalyst. The polymer is heated to a molten state and extruded to form a fiber preform at a temperature within the range of about 170°-210° C. The fiber preform is spun at a spinning speed of at least 200 meters per minute and quenched at a heat transfer rate of no more than 12 joules per second fiber. The spun fiber is then subjected to a winding operation. The fiber may be drawn subsequent to the quenching operation and prior to winding. The cooled fiber preform may be drawn to produce a fiber at a draw ratio within the range of about 1.5-4.0 with shrinkage of the fiber over the range of the draw ratio at a variance of ±25% of the median of the shrinkage factor over the draw ratio.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: April 12, 2005
    Assignee: Fina Technology, Inc.
    Inventors: Scott D. Cooper, Mohan Gownder, Jay Nguygen
  • Patent number: 6878787
    Abstract: Supported stereospecific catalysts and processes for the stereotactic propagation of a polymer chain derived from ethylenically unsaturated monomers such as the polymerization of propylene to produce syndiotactic polypropylene or isotactic polypropylene. The supported catalyst comprises a stereospecific metallocene catalyst component and a co-catalyst component comprising an alkylalumoxane. Both the metallocene catalyst component and the co-catalyst component are supported on a particulate polyamide support comprising spheroidical particles of a polyamide having an average diameter with the range of 5-60 microns, and a porosity permitting distribution of a portion of the co-catalyst within the pore volume of the polyamide particles while retaining a substantial portion on the surface of the particles. The polyamide support is characterized by relatively low surface area, specifically a surface area less than 20 square meters per gram.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: April 12, 2005
    Assignee: Fina Technology, Inc.
    Inventors: David John Rauscher, William John Gauthier, Shady Nader Henry, Kai Hortmann
  • Patent number: 6872763
    Abstract: Provided is a vulcanizing agent for vulcanizing bitumen, which vulcanizing agent comprises a sulphur agent and a binder, wherein the vulcanizing agent is in the form of pellets. Further provided is a process for producing a surfacing composition, which process comprises contacting bitumen with an elastomer and the vulcanizing agent of the present invention.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: March 29, 2005
    Assignee: ATOFINA Research, S.A.
    Inventor: Patrizio Andriolo
  • Patent number: 6872790
    Abstract: The present invention provides a method for varying the melting points and molecular weights of polyolefins by changing the structure of the catalyst used in the polymerization. The catalysts that are useful in the present invention are chiral, stereorigid metallocene catalyst of the formula R?(C5R?m)2MeQ. The catalysts include a bridge structure between the (C5R?m) groups and may contain substituents on the groups. It has been discovered that the melting points and molecular weights of the polymers produced by such catalysts are influenced by the bridge and substituents added to the (C5R?m) groups. Thus, the present invention provides a method for varying the melting points of the polymer product and a method of varying the molecular weights of the product by changing the components and structure of the metallocene catalysts. The present invention also provides a process for polymerizing olefins in which the melting points and/or molecular weights of the product may be controlled.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: March 29, 2005
    Assignee: Fina Technology, Inc.
    Inventor: John A. Ewen
  • Patent number: 6872363
    Abstract: A process of producing polyethylene, the process comprising copolymerizing ethylene and an alpha-olefinic comonomer comprising from 3 to 8 carbon atoms in the presence of a chromium-based catalyst in a main polymerization reactor and, in a gas-phase preliminary reactor upstream of the main polymerization reactor, chemically treating the chromium-based catalyst with at least one treatment agent prior to introduction of the catalyst into the main polymerization reactor and releasing from the preliminary reactor waste gases produced during the chemical treatment.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: March 29, 2005
    Assignee: Fina Research, SA
    Inventor: Guy Debras
  • Patent number: 6863941
    Abstract: An automobile fuel tank comprising at least two components which have been joined together to form a tank having a wall defining a fuel chamber, at least one of the components being injection moulded and defining a part of the wall and composed of a polyethylene having a density of from 0.930 to 0.955 g/cm3, a dispersion index D of from 2 to 3 and a melt index MI2 of from 0.2 to 2 g/10 min.
    Type: Grant
    Filed: January 24, 2003
    Date of Patent: March 8, 2005
    Assignee: ATOFINA Research S.A.
    Inventor: Patrick Detounay
  • Patent number: 6858133
    Abstract: A process for desulfurising an olefin-containing hydrocarbon feedstock including sulfur-containing hydrocarbon compounds as impurities, the process comprising passing a hydrocarbon feedstock containing one or more olefins through a reactor containing a crystalline silicate selected from the group consisting of an MFI-type crystalline silicate having a silicon/aluminum atomic ratio of at least 180 and an MEL-type crystalline silicate having a silicon/aluminum atomic ratio of from 150 to 800 which has been subjected to a steaming step to produce an effluent with an olefin content of lower molecular weight than that of the feedstock and removing hydrogen sulphide from the effluent.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: February 22, 2005
    Assignee: Atofina Research S.A.
    Inventors: Jean-Pierre Dath, Walter Vermeiren, Koen Herrebout
  • Patent number: 6858170
    Abstract: The present invention relates to a process for preparing silica-alumina carriers preferably under the form of extrudates. Further, the present invention also provides hydrogenation catalysts prepared thereof. These catalysts are used in an improved process for the reduction of the aromatic hydrocarbons content present in hydrocarbon streams.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: February 22, 2005
    Assignee: ATOFINA Research
    Inventors: Hugo Van Thillo, Philippe Bodart, Christian Lamotte, Jacques Grootjans
  • Patent number: 6855782
    Abstract: Supported stereospecific catalysts and processes for the stereotactic propagation of a polymer chain derived from ethylenically unsaturated monomers which contain three or more carbon atoms or which are substituted vinyl compounds, such as styrene and vinyl chloride. One application is the stereospecific propagation of C3-C4 alpha olefins, particularly the polymerization of propylene to produce syndiotactic polypropylene over a supported metallocene catalyst comprising a stereospecific metallocene catalyst component incorporating a metallocene ligand structure having two sterically dissimilar cyclopentadienyl ring structures coordinated with the central transition metal atom. Both of the cyclopentadienyl groups are in a relationship with one another by virtue of bridge or substituent groups, which provide a stereorigid relationship relative to the coordinating transition metal atom to prevent rotation of said ring structures.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: February 15, 2005
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, Margarito Lopez
  • Patent number: 6852764
    Abstract: Provided is a blend comprising: a) from 20 to 60 wt % of a thermoplastic elastomer; b) from 8 to 30 wt % of a vinylaromatic polymer; c) from 10 to 30 wt % of one or more processing aid; d) from 0 to 20 wt % of one or more additives.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: February 8, 2005
    Assignee: Atofina Research S.A.
    Inventor: Jean-Marie Mlinaric