Patents Represented by Attorney, Agent or Law Firm William R. Moser
  • Patent number: 6307672
    Abstract: A microscope collision protection apparatus for a remote control microscope which protects the optical and associated components from damage in the event of an uncontrolled collision with a specimen, regardless of the specimen size or shape. In a preferred embodiment, the apparatus includes a counterbalanced slide for mounting the microscope's optical components. This slide replaces the rigid mounts on conventional upright microscopes with a precision ball bearing slide. As the specimen contacts an optical component, the contacting force will move the slide and the optical components mounted thereon. This movement will protect the optical and associated components from damage as the movement causes a limit switch to be actuated, thereby stopping all motors responsible for the collision.
    Type: Grant
    Filed: December 31, 1996
    Date of Patent: October 23, 2001
    Assignee: The United States of America as represented by the Department of Energy
    Inventor: Charles R. DeNure
  • Patent number: 6244155
    Abstract: The present invention relates to a containment structure for containing and mitigating explosions. The containment structure is installed in the wall of the building and has interior and exterior doors for placing suspicious packages into the containment structure and retrieving them from the exterior of the building. The containment structure has a blast deflection chute and a blowout panel to direct over pressure from explosions away from the building, surrounding structures and people.
    Type: Grant
    Filed: March 16, 1999
    Date of Patent: June 12, 2001
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Michael H. Sparks
  • Patent number: 6225503
    Abstract: A method is disclosed for the preparation of very small particle size, relatively pure 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Particles of TATB prepared according to the disclosed method are of submicron size and have a surface area in the range from about 3.8 to 27 square meters per gram.
    Type: Grant
    Filed: April 3, 1992
    Date of Patent: May 1, 2001
    Assignee: The United States of America as represented by the United States Department of Energy.
    Inventors: Lester P. Rigdon, Gordon L. Moody, Raymond R. McGuire
  • Patent number: 6226341
    Abstract: A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.
    Type: Grant
    Filed: March 2, 1954
    Date of Patent: May 1, 2001
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Albert T. Strand
  • Patent number: 6222112
    Abstract: A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.
    Type: Grant
    Filed: August 23, 1999
    Date of Patent: April 24, 2001
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Benjamin J. Shaner, Joseph H. Wolf, Robert G. R. Johnson
  • Patent number: 6212250
    Abstract: A method for providing a leak-tight metal enclosure to a fuel matrix penetrated by coolant channels, wherein the mutually contacting surfaces of said metal enclosure and said fuel matrix are metallurgically bonded, comprising placing a metal cladding about the lateral surface of said fuel matrix; disposing metal coolant tubes within said coolant channels; placing a perforated header plate having tubular extensions at each end of the fuel matrix from which the coolant tube ends protrude, said coolant tubes passing through said perforated header plate and said tubular extensions and terminating even with the ends of said extensions; welding, under vacuum, said cladding to said header plates, and the ends of said coolant tubes to the ends of said tubular extensions; exposing the assembly comprising the fuel matrix and enclosure to a gas at high temperature and pressure; and machining said header plates to provide a finished fuel element.
    Type: Grant
    Filed: July 13, 1965
    Date of Patent: April 3, 2001
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: George Korton, Cyril C. Hussey
  • Patent number: 6190507
    Abstract: A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: February 20, 2001
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: John H. Whealton, Gregory R. Hanson, John M. Storey, Richard J. Raridon, Jeffrey S. Armfield, Timothy S. Bigelow, Ronald L. Graves
  • Patent number: 6189718
    Abstract: A fluidtight seal for a container is formed by abutting a metal ring with a step machined in a convexo-concave container closure device and inserting this assembly into an open end of the container. Under compressive force, the closure device deforms causing the metal ring to pivot about the step on the closure device and interact with symmetrically tapered inner walls of the container to form a fluidtight seal between the container and the closure device. The compressive force is then withdrawn without affecting the fluidtight characteristic of the seal. A destructive force against the container closure device is necessary to destroy the fluidtight seal.
    Type: Grant
    Filed: March 31, 1999
    Date of Patent: February 20, 2001
    Assignee: The United States of America as represented by the Department of Energy
    Inventor: Edward F. Morrison
  • Patent number: 6189857
    Abstract: A fluid-actuated squeeze valve is provided for use where leak-tight operation and/or very rapid valve closure characteristics are required. The valve comprises an annular valve body with a generally cylindrical open-ended bore for receiving the frusto-conical end portions of two, axially aligned, opposed end plugs. An annular clearance is provided between the end portions and the bore wall for receiving an elastomeric sleeve. Each end plug is provided with an axially extending bore for passage of process fluid which communicates with angled passageways extending from the bore to the slant surface of a respective frusto-conical end portion. The smaller truncated end surfaces of the two opposed end portions are spaced apart axially to define a narrow gap therebetween. Fluid pressure is exerted through an access port in the valve body to actuate the valve by causing the elastomeric sleeve to press against the end portions. Means for operating the valve in response to system pressure parameters are described.
    Type: Grant
    Filed: April 13, 1971
    Date of Patent: February 20, 2001
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Leroy Zeger, Edward R. Promin
  • Patent number: 6187163
    Abstract: Purified plutonium and gallium are efficiently recovered from a solid plutonium-gallium (Pu—Ga) alloy by using an electrorefining process. The solid Pu—Ga alloy is the cell anode, preferably placed in a moving basket within the electrolyte. As the surface of the Pu—Ga anode is depleted in plutonium by the electrotransport of the plutonium to a cathode, the temperature of the electrolyte is sufficient to liquify the surface, preferably at about 500° C., resulting in a liquid anode layer substantially comprised of gallium. The gallium drips from the liquified surface and is collected below the anode within the electrochemical cell. The transported plutonium is collected on the cathode surface and is recovered.
    Type: Grant
    Filed: December 8, 1998
    Date of Patent: February 13, 2001
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: William E. Miller, Zygmunt Tomczuk
  • Patent number: 6184430
    Abstract: A method of cracking a feedstock by contacting the feedstock with a metal-promoted anion-modified metal oxide catalyst in the presence of hydrogen gas. The metal oxide of the catalyst is one or more of ZrO2, HfO2, TiO2 and SnO2, and the feedstock is principally chains of at least 20 carbon atoms. The metal-promoted anion-modified metal oxide catalyst contains one or more of Pt, Ni, Pd, Rh, Ir, Ru, (Mn & Fe) or mixtures of them present between about 0.2% to about 15% by weight of the catalyst. The metal-promoted anion-modified metal oxide catalyst contains one or more of SO4, WO3, or mixtures of them present between about 0.5% to about 20% by weight of the catalyst.
    Type: Grant
    Filed: December 5, 1996
    Date of Patent: February 6, 2001
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Koppampatti R. Venkatesh, Jianli Hu, John W. Tierney, Irving Wender
  • Patent number: 6174493
    Abstract: Porous articles consisting virtually entirely of beryllium metal are prepared by using iodine as a fugitive pore former. An admixture of beryllium powder and crystalline iodine is pressed into a compact and then heated in vacuum at a temperature of about 100° C. to sublime the iodine. The compact is thereafter sintered at a temperature of about 1000° C.
    Type: Grant
    Filed: December 6, 1967
    Date of Patent: January 16, 2001
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Joseph J. Asbury
  • Patent number: 6165641
    Abstract: Disclosed are transition metal electrodes for electrochemical cells using gel-state and solid-state polymers. The electrodes are suitable for use in primary and secondary cells. The electrodes (either negative electrode or positive electrode) are characterized by uniform dispersion of the transition metal at the nanoscale in the polymer. The transition metal moiety is structurally amorphous, so no capacity fade should occur due to lattice expansion/contraction mechanisms. The small grain size, amorphous structure and homogeneous distribution provide improved charge/discharge cycling performance, and a higher initial discharge rate capability. The cells can be cycled at high current densities, limited only by the electrolyte conductivity. A method of making the electrodes (positive and negative), and their usage in electrochemical cells are disclosed.
    Type: Grant
    Filed: February 4, 1998
    Date of Patent: December 26, 2000
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Kathryn A. Striebel, Shi-Jie Wen
  • Patent number: 6162987
    Abstract: An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMS), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: December 19, 2000
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Christopher S. Murray, David M. Wilt
  • Patent number: 6160862
    Abstract: A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith.
    Type: Grant
    Filed: August 14, 1997
    Date of Patent: December 12, 2000
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Thomas C. Wiencek, James E. Matos, Gerard L. Hofman
  • Patent number: 6156975
    Abstract: End moldings for high-voltage cables are described wherein the dielectric insulator of the cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. Disclosed is a method for making the cable connectors either in the field or in a factory, molds suitable for use with the method, and the molded cable connectors, themselves.
    Type: Grant
    Filed: August 17, 1998
    Date of Patent: December 5, 2000
    Assignee: The United States of America as represented by United States Department of Energy
    Inventor: Lars D. Roose
  • Patent number: 6155989
    Abstract: A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: December 5, 2000
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Joseph Collins
  • Patent number: 6153103
    Abstract: A method of separating ultra-fine particulates from an aqueous suspension such as a process stream or a waste stream. The method involves the addition of alkali silicate and an organic gelling agent to a volume of liquid, from the respective process or waste stream, to form a gel. The gel then undergoes syneresis to remove water and soluble salts from the gel containing the particulates, thus, forming a silica monolith. The silica monolith is then sintered to form a hard, nonporous waste form.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: November 28, 2000
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: David J. Chaiko, John P. Kopasz, Adam J. G. Ellison
  • Patent number: H1937
    Abstract: A pressure measuring instrument that utilizes the change of the refractive index of a gas as a function of pressure and the coherent nature of a laser light to determine the barometric pressure within an environment. As the gas pressure in a closed environment varies, the index of refraction of the gas changes. The amount of change is a function of the gas pressure. By illuminating the gas with a laser light source, causing the wavelength of the light to change, pressure can be quantified by measuring the shift in fringes (alternating light and dark bands produced when coherent light is mixed) in an interferometer.
    Type: Grant
    Filed: February 29, 1996
    Date of Patent: February 6, 2001
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Kevin R. Abercrombie, David Shiels, Tim Rash
  • Patent number: H2004
    Abstract: The present invention includes an attachment apparatus comprising a rotation limiting member adapted to be threaded onto a threaded member; and a preload nut adapted to be threaded onto the threaded member. The rotation limiting member comprises a plurality of pins, and the preload nut comprises a plurality of slots, preferably wherein the plurality of pins and the plurality of slots are the same in number, which is preferably three. The plurality of pins of the rotation limiting member are filled into a corresponding plurality of slots of the preload nut to form a rotatable unit adapted to be threaded onto the threaded member. In use, the rotatable unit is threaded onto the threaded member. The present invention thus provides a unitized removable device for holes, including holes other than circular in shape, which have an established depth before an end of, or before an enlargement of the hole.
    Type: Grant
    Filed: August 18, 1998
    Date of Patent: November 6, 2001
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Edward F. Morrison